File size: 22,342 Bytes
574a515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
import sys
sys.path.append('/aifs4su/data/zheny/bigcodec_final/BigCodec_conv_transformer_vocos')
import numpy as np
import torch
import torch.nn as nn
from vq.residual_vq import ResidualVQ
from vq.module import WNConv1d, DecoderBlock, ResLSTM
from vq.alias_free_torch import *
from vq import activations
from typing import Optional
from vq.module import ConvNeXtBlock, AdaLayerNorm
from vq.bs_roformer5 import TransformerBlock
# from rotary_embedding_torch import RotaryEmbedding
from torchtune.modules import RotaryPositionalEmbeddings
from vector_quantize_pytorch import ResidualFSQ
from torch.nn import Module, ModuleList
class ISTFT(nn.Module):
"""
Custom implementation of ISTFT since torch.istft doesn't allow custom padding (other than `center=True`) with
windowing. This is because the NOLA (Nonzero Overlap Add) check fails at the edges.
See issue: https://github.com/pytorch/pytorch/issues/62323
Specifically, in the context of neural vocoding we are interested in "same" padding analogous to CNNs.
The NOLA constraint is met as we trim padded samples anyway.
Args:
n_fft (int): Size of Fourier transform.
hop_length (int): The distance between neighboring sliding window frames.
win_length (int): The size of window frame and STFT filter.
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
"""
def __init__(self, n_fft: int, hop_length: int, win_length: int, padding: str = "same"):
super().__init__()
if padding not in ["center", "same"]:
raise ValueError("Padding must be 'center' or 'same'.")
self.padding = padding
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
window = torch.hann_window(win_length)
self.register_buffer("window", window)
def forward(self, spec: torch.Tensor) -> torch.Tensor:
"""
Compute the Inverse Short Time Fourier Transform (ISTFT) of a complex spectrogram.
Args:
spec (Tensor): Input complex spectrogram of shape (B, N, T), where B is the batch size,
N is the number of frequency bins, and T is the number of time frames.
Returns:
Tensor: Reconstructed time-domain signal of shape (B, L), where L is the length of the output signal.
"""
if self.padding == "center":
# Fallback to pytorch native implementation
return torch.istft(spec, self.n_fft, self.hop_length, self.win_length, self.window, center=True)
elif self.padding == "same":
pad = (self.win_length - self.hop_length) // 2
else:
raise ValueError("Padding must be 'center' or 'same'.")
assert spec.dim() == 3, "Expected a 3D tensor as input"
B, N, T = spec.shape
# Inverse FFT
ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward")
ifft = ifft * self.window[None, :, None]
# Overlap and Add
output_size = (T - 1) * self.hop_length + self.win_length
y = torch.nn.functional.fold(
ifft, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length),
)[:, 0, 0, pad:-pad]
# Window envelope
window_sq = self.window.square().expand(1, T, -1).transpose(1, 2)
window_envelope = torch.nn.functional.fold(
window_sq, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length),
).squeeze()[pad:-pad]
# Normalize
assert (window_envelope > 1e-11).all()
y = y / window_envelope
return y
class FourierHead(nn.Module):
"""Base class for inverse fourier modules."""
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
L is the sequence length, and H denotes the model dimension.
Returns:
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
"""
raise NotImplementedError("Subclasses must implement the forward method.")
class ISTFTHead(FourierHead):
"""
ISTFT Head module for predicting STFT complex coefficients.
Args:
dim (int): Hidden dimension of the model.
n_fft (int): Size of Fourier transform.
hop_length (int): The distance between neighboring sliding window frames, which should align with
the resolution of the input features.
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
"""
def __init__(self, dim: int, n_fft: int, hop_length: int, padding: str = "same"):
super().__init__()
out_dim = n_fft + 2
self.out = torch.nn.Linear(dim, out_dim)
self.istft = ISTFT(n_fft=n_fft, hop_length=hop_length, win_length=n_fft, padding=padding)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the ISTFTHead module.
Args:
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
L is the sequence length, and H denotes the model dimension.
Returns:
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
"""
x_pred = self.out(x )
# x_pred = x
x_pred = x_pred.transpose(1, 2)
mag, p = x_pred.chunk(2, dim=1)
mag = torch.exp(mag)
mag = torch.clip(mag, max=1e2) # safeguard to prevent excessively large magnitudes
# wrapping happens here. These two lines produce real and imaginary value
x = torch.cos(p)
y = torch.sin(p)
# recalculating phase here does not produce anything new
# only costs time
# phase = torch.atan2(y, x)
# S = mag * torch.exp(phase * 1j)
# better directly produce the complex value
S = mag * (x + 1j * y)
audio = self.istft(S)
return audio.unsqueeze(1),x_pred
def nonlinearity(x):
# swish
return x * torch.sigmoid(x)
def Normalize(in_channels, num_groups=32):
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
class ResnetBlock(nn.Module):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
dropout, temb_channels=512):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv1d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if temb_channels > 0:
self.temb_proj = torch.nn.Linear(temb_channels,
out_channels)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = torch.nn.Conv1d(out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv1d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
else:
self.nin_shortcut = torch.nn.Conv1d(in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x, temb=None):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
if temb is not None:
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class AttnBlock(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h = q.shape
q = q.permute(0, 2, 1) # b,hw,c
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w_ = w_ * (int(c) ** (-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
h_ = self.proj_out(h_)
return x + h_
def make_attn(in_channels, attn_type="vanilla"):
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
if attn_type == "vanilla":
return AttnBlock(in_channels)
class Backbone(nn.Module):
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers."""
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
"""
Args:
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size,
C denotes output features, and L is the sequence length.
Returns:
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length,
and H denotes the model dimension.
"""
raise NotImplementedError("Subclasses must implement the forward method.")
class VocosBackbone(Backbone):
"""
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization
Args:
input_channels (int): Number of input features channels.
dim (int): Hidden dimension of the model.
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock.
num_layers (int): Number of ConvNeXtBlock layers.
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`.
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
None means non-conditional model. Defaults to None.
"""
def __init__(
self, hidden_dim=1024,depth=12,heads=16,pos_meb_dim=64):
super().__init__()
self.embed = nn.Conv1d(hidden_dim, hidden_dim, kernel_size=7, padding=3)
self.temb_ch = 0
block_in = hidden_dim
dropout = 0.1
prior_net : tp.List[nn.Module] = [
ResnetBlock(in_channels=block_in,out_channels=block_in,
temb_channels=self.temb_ch,dropout=dropout),
ResnetBlock(in_channels=block_in,out_channels=block_in,
temb_channels=self.temb_ch,dropout=dropout),
]
self.prior_net = nn.Sequential(*prior_net)
depth = depth
time_rotary_embed = RotaryPositionalEmbeddings(dim=pos_meb_dim)
transformer_blocks = [
TransformerBlock(dim=hidden_dim, n_heads=heads, rotary_embed=time_rotary_embed)
for _ in range(depth)
]
self.transformers = nn.Sequential(*transformer_blocks)
self.final_layer_norm = nn.LayerNorm(hidden_dim, eps=1e-6)
post_net : tp.List[nn.Module] = [
ResnetBlock(in_channels=block_in,out_channels=block_in,
temb_channels=self.temb_ch,dropout=dropout),
ResnetBlock(in_channels=block_in,out_channels=block_in,
temb_channels=self.temb_ch,dropout=dropout),
]
self.post_net = nn.Sequential(*post_net)
def forward(self, x: torch.Tensor ) -> torch.Tensor:
x = x.transpose(1, 2)
x = self.embed(x)
x = self.prior_net(x)
x = x.transpose(1, 2)
x= self.transformers(x)
x = x.transpose(1, 2)
x = self.post_net(x)
x = x.transpose(1, 2)
x = self.final_layer_norm(x)
return x
def init_weights(m):
if isinstance(m, nn.Conv1d):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
class CodecDecoderVocos(nn.Module):
def __init__(self,
hidden_dim=1024,
depth=12,
heads=16,
pos_meb_dim=64,
hop_length=320,
vq_num_quantizers=1,
vq_dim=2048, #1024 2048
vq_commit_weight=0.25,
vq_weight_init=False,
vq_full_commit_loss=False,
codebook_size=16384,
codebook_dim=16,
):
super().__init__()
self.hop_length = hop_length
self.quantizer = ResidualFSQ(
dim = vq_dim,
levels = [4, 4, 4, 4, 4,4,4,4],
num_quantizers = 1
)
# self.quantizer = ResidualVQ(
# num_quantizers=vq_num_quantizers,
# dim=vq_dim,
# codebook_size=codebook_size,
# codebook_dim=codebook_dim,
# threshold_ema_dead_code=2,
# commitment=vq_commit_weight,
# weight_init=vq_weight_init,
# full_commit_loss=vq_full_commit_loss,
# )
self.backbone = VocosBackbone( hidden_dim=hidden_dim,depth=depth,heads=heads,pos_meb_dim=pos_meb_dim)
self.head = ISTFTHead(dim=hidden_dim, n_fft=self.hop_length*4, hop_length=self.hop_length, padding="same")
self.reset_parameters()
def forward(self, x, vq=True):
if vq is True:
# x, q, commit_loss = self.quantizer(x)
x = x.permute(0, 2, 1)
x, q = self.quantizer(x)
x = x.permute(0, 2, 1)
q = q.permute(0, 2, 1)
return x, q, None
x = self.backbone(x)
x,_ = self.head(x)
return x ,_
def vq2emb(self, vq):
self.quantizer = self.quantizer.eval()
x = self.quantizer.vq2emb(vq)
return x
def get_emb(self):
self.quantizer = self.quantizer.eval()
embs = self.quantizer.get_emb()
return embs
def inference_vq(self, vq):
x = vq[None,:,:]
x = self.model(x)
return x
def inference_0(self, x):
x, q, loss, perp = self.quantizer(x)
x = self.model(x)
return x, None
def inference(self, x):
x = self.model(x)
return x, None
def remove_weight_norm(self):
"""Remove weight normalization module from all of the layers."""
def _remove_weight_norm(m):
try:
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d):
torch.nn.utils.weight_norm(m)
self.apply(_apply_weight_norm)
def reset_parameters(self):
self.apply(init_weights)
class CodecDecoderVocos_transpose(nn.Module):
def __init__(self,
hidden_dim=1024,
depth=12,
heads=16,
pos_meb_dim=64,
hop_length=320,
vq_num_quantizers=1,
vq_dim=1024, #1024 2048
vq_commit_weight=0.25,
vq_weight_init=False,
vq_full_commit_loss=False,
codebook_size=16384,
codebook_dim=16,
):
super().__init__()
self.hop_length = hop_length
self.quantizer = ResidualVQ(
num_quantizers=vq_num_quantizers,
dim=vq_dim,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
threshold_ema_dead_code=2,
commitment=vq_commit_weight,
weight_init=vq_weight_init,
full_commit_loss=vq_full_commit_loss,
)
self.backbone = VocosBackbone( hidden_dim=hidden_dim,depth=depth,heads=heads,pos_meb_dim=pos_meb_dim)
self.inverse_mel_conv = nn.Sequential(
nn.GELU(),
nn.ConvTranspose1d(
in_channels=hidden_dim,
out_channels=hidden_dim,
kernel_size=3,
stride=2,
padding=1,
output_padding=1 # 确保输出长度与编码前匹配
),
nn.GELU(),
nn.ConvTranspose1d(
in_channels=hidden_dim,
out_channels=hidden_dim,
kernel_size=3,
padding=1
)
)
self.head = ISTFTHead(dim=hidden_dim, n_fft=self.hop_length*4, hop_length=self.hop_length, padding="same")
self.reset_parameters()
def forward(self, x, vq=True):
if vq is True:
x, q, commit_loss = self.quantizer(x)
return x, q, commit_loss
x = self.backbone(x)
x,_ = self.head(x)
return x ,_
def vq2emb(self, vq):
self.quantizer = self.quantizer.eval()
x = self.quantizer.vq2emb(vq)
return x
def get_emb(self):
self.quantizer = self.quantizer.eval()
embs = self.quantizer.get_emb()
return embs
def inference_vq(self, vq):
x = vq[None,:,:]
x = self.model(x)
return x
def inference_0(self, x):
x, q, loss, perp = self.quantizer(x)
x = self.model(x)
return x, None
def inference(self, x):
x = self.model(x)
return x, None
def remove_weight_norm(self):
"""Remove weight normalization module from all of the layers."""
def _remove_weight_norm(m):
try:
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d):
torch.nn.utils.weight_norm(m)
self.apply(_apply_weight_norm)
def reset_parameters(self):
self.apply(init_weights)
def main():
# 设置设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# 初始化模型
model = CodecDecoderVocos_transpose().to(device)
print("Model initialized.")
# 创建测试输入: batch_size x in_channels x sequence_length
batch_size = 2
in_channels = 1024
sequence_length = 50 # 示例长度,可以根据需要调整
dummy_input = torch.randn(batch_size, in_channels, sequence_length).to(device)
print(f"Dummy input shape: {dummy_input.shape}")
# 将模型设为评估模式
model.eval()
# 前向传播(使用 VQ)
# with torch.no_grad():
# try:
# output, q, commit_loss = model(dummy_input, vq=True)
# print("Forward pass with VQ:")
# print(f"Output shape: {output.shape}")
# print(f"Quantized codes shape: {q.shape}")
# print(f"Commitment loss: {commit_loss}")
# except Exception as e:
# print(f"Error during forward pass with VQ: {e}")
# 前向传播(不使用 VQ)
with torch.no_grad():
# try:
output_no_vq = model(dummy_input, vq=False)
print("\nForward pass without VQ:")
print(f"Output shape: {output_no_vq.shape}")
c=1
# except Exception as e:
# print(f"Error during forward pass without VQ: {e}")
# model_size_bytes = sum(p.numel() * p.element_size() for p in model.parameters())
# model_size_mb = model_size_bytes / (1024 ** 2)
# print(f"Model size: {model_size_bytes} bytes ({model_size_mb:.2f} MB)")
if __name__ == "__main__":
main() |