File size: 14,471 Bytes
574a515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import torch.nn as nn
from einops import rearrange
from . import activations
from .alias_free_torch import *
from torch.nn.utils import weight_norm
from typing import Optional, Tuple
from torch.nn.utils import weight_norm, remove_weight_norm
def WNConv1d(*args, **kwargs):
return weight_norm(nn.Conv1d(*args, **kwargs))
def WNConvTranspose1d(*args, **kwargs):
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
class ResidualUnit(nn.Module):
def __init__(self, dim: int = 16, dilation: int = 1):
super().__init__()
pad = ((7 - 1) * dilation) // 2
self.block = nn.Sequential(
Activation1d(activation=activations.SnakeBeta(dim, alpha_logscale=True)),
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
Activation1d(activation=activations.SnakeBeta(dim, alpha_logscale=True)),
WNConv1d(dim, dim, kernel_size=1),
)
def forward(self, x):
return x + self.block(x)
class EncoderBlock(nn.Module):
def __init__(self, dim: int = 16, stride: int = 1, dilations = (1, 3, 9)):
super().__init__()
runits = [ResidualUnit(dim // 2, dilation=d) for d in dilations]
self.block = nn.Sequential(
*runits,
Activation1d(activation=activations.SnakeBeta(dim//2, alpha_logscale=True)),
WNConv1d(
dim // 2,
dim,
kernel_size=2 * stride,
stride=stride,
padding=stride // 2 + stride % 2,
),
)
def forward(self, x):
return self.block(x)
class DecoderBlock(nn.Module):
def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1, dilations = (1, 3, 9)):
super().__init__()
self.block = nn.Sequential(
Activation1d(activation=activations.SnakeBeta(input_dim, alpha_logscale=True)),
WNConvTranspose1d(
input_dim,
output_dim,
kernel_size=2 * stride,
stride=stride,
padding=stride // 2 + stride % 2,
output_padding= stride % 2,
)
)
self.block.extend([ResidualUnit(output_dim, dilation=d) for d in dilations])
def forward(self, x):
return self.block(x)
class ResLSTM(nn.Module):
def __init__(self, dimension: int,
num_layers: int = 2,
bidirectional: bool = False,
skip: bool = True):
super().__init__()
self.skip = skip
self.lstm = nn.LSTM(dimension, dimension if not bidirectional else dimension // 2,
num_layers, batch_first=True,
bidirectional=bidirectional)
def forward(self, x):
"""
Args:
x: [B, F, T]
Returns:
y: [B, F, T]
"""
x = rearrange(x, "b f t -> b t f")
y, _ = self.lstm(x)
if self.skip:
y = y + x
y = rearrange(y, "b t f -> b f t")
return y
class ConvNeXtBlock(nn.Module):
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal.
Args:
dim (int): Number of input channels.
intermediate_dim (int): Dimensionality of the intermediate layer.
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
Defaults to None.
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
None means non-conditional LayerNorm. Defaults to None.
"""
def __init__(
self,
dim: int,
intermediate_dim: int,
layer_scale_init_value: float,
adanorm_num_embeddings: Optional[int] = None,
):
super().__init__()
self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
self.adanorm = adanorm_num_embeddings is not None
if adanorm_num_embeddings:
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
else:
self.norm = nn.LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(intermediate_dim, dim)
self.gamma = (
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
if layer_scale_init_value > 0
else None
)
def forward(self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None) -> torch.Tensor:
residual = x
x = self.dwconv(x)
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C)
if self.adanorm:
assert cond_embedding_id is not None
x = self.norm(x, cond_embedding_id)
else:
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T)
x = residual + x
return x
class AdaLayerNorm(nn.Module):
"""
Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes
Args:
num_embeddings (int): Number of embeddings.
embedding_dim (int): Dimension of the embeddings.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.dim = embedding_dim
self.scale = nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim)
self.shift = nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim)
torch.nn.init.ones_(self.scale.weight)
torch.nn.init.zeros_(self.shift.weight)
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor) -> torch.Tensor:
scale = self.scale(cond_embedding_id)
shift = self.shift(cond_embedding_id)
x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps)
x = x * scale + shift
return x
class ResBlock1(nn.Module):
"""
ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions,
but without upsampling layers.
Args:
dim (int): Number of input channels.
kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3.
dilation (tuple[int], optional): Dilation factors for the dilated convolutions.
Defaults to (1, 3, 5).
lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function.
Defaults to 0.1.
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
Defaults to None.
"""
def __init__(
self,
dim: int,
kernel_size: int = 3,
dilation: Tuple[int, int, int] = (1, 3, 5),
lrelu_slope: float = 0.1,
layer_scale_init_value: Optional[float] = None,
):
super().__init__()
self.lrelu_slope = lrelu_slope
self.convs1 = nn.ModuleList(
[
weight_norm(
nn.Conv1d(
dim,
dim,
kernel_size,
1,
dilation=dilation[0],
padding=self.get_padding(kernel_size, dilation[0]),
)
),
weight_norm(
nn.Conv1d(
dim,
dim,
kernel_size,
1,
dilation=dilation[1],
padding=self.get_padding(kernel_size, dilation[1]),
)
),
weight_norm(
nn.Conv1d(
dim,
dim,
kernel_size,
1,
dilation=dilation[2],
padding=self.get_padding(kernel_size, dilation[2]),
)
),
]
)
self.convs2 = nn.ModuleList(
[
weight_norm(nn.Conv1d(dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1))),
weight_norm(nn.Conv1d(dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1))),
weight_norm(nn.Conv1d(dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1))),
]
)
self.gamma = nn.ParameterList(
[
nn.Parameter(layer_scale_init_value * torch.ones(dim, 1), requires_grad=True)
if layer_scale_init_value is not None
else None,
nn.Parameter(layer_scale_init_value * torch.ones(dim, 1), requires_grad=True)
if layer_scale_init_value is not None
else None,
nn.Parameter(layer_scale_init_value * torch.ones(dim, 1), requires_grad=True)
if layer_scale_init_value is not None
else None,
]
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma):
xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope)
xt = c1(xt)
xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope)
xt = c2(xt)
if gamma is not None:
xt = gamma * xt
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
@staticmethod
def get_padding(kernel_size: int, dilation: int = 1) -> int:
return int((kernel_size * dilation - dilation) / 2)
def safe_log(x: torch.Tensor, clip_val: float = 1e-7) -> torch.Tensor:
"""
Computes the element-wise logarithm of the input tensor with clipping to avoid near-zero values.
Args:
x (Tensor): Input tensor.
clip_val (float, optional): Minimum value to clip the input tensor. Defaults to 1e-7.
Returns:
Tensor: Element-wise logarithm of the input tensor with clipping applied.
"""
return torch.log(torch.clip(x, min=clip_val))
def symlog(x: torch.Tensor) -> torch.Tensor:
return torch.sign(x) * torch.log1p(x.abs())
def symexp(x: torch.Tensor) -> torch.Tensor:
return torch.sign(x) * (torch.exp(x.abs()) - 1)
class SemanticEncoder(nn.Module):
def __init__(
self,
input_channels: int,
code_dim: int,
encode_channels: int,
kernel_size: int = 3,
bias: bool = True,
):
super(SemanticEncoder, self).__init__()
# 初始卷积,将 input_channels 映射到 encode_channels
self.initial_conv = nn.Conv1d(
in_channels=input_channels,
out_channels=encode_channels,
kernel_size=kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
bias=False
)
# 残差块
self.residual_blocks = nn.Sequential(
nn.ReLU(inplace=True),
nn.Conv1d(
encode_channels,
encode_channels,
kernel_size=kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
bias=bias
),
nn.ReLU(inplace=True),
nn.Conv1d(
encode_channels,
encode_channels,
kernel_size=kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
bias=bias
)
)
# 最终卷积,将 encode_channels 映射到 code_dim
self.final_conv = nn.Conv1d(
in_channels=encode_channels,
out_channels=code_dim,
kernel_size=kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
bias=False
)
def forward(self, x):
"""
前向传播方法。
Args:
x (Tensor): 输入张量,形状为 (Batch, Input_channels, Length)
Returns:
Tensor: 编码后的张量,形状为 (Batch, Code_dim, Length)
"""
x = self.initial_conv(x) # (Batch, Encode_channels, Length)
x = self.residual_blocks(x) + x # 残差连接
x = self.final_conv(x) # (Batch, Code_dim, Length)
return x
class SemanticDecoder(nn.Module):
def __init__(
self,
code_dim: int,
output_channels: int,
decode_channels: int,
kernel_size: int = 3,
bias: bool = True,
):
super(SemanticDecoder, self).__init__()
# Initial convolution to map code_dim to decode_channels
self.initial_conv = nn.Conv1d(
in_channels=code_dim,
out_channels=decode_channels,
kernel_size=kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
bias=False
)
# Residual Blocks
self.residual_blocks = nn.Sequential(
nn.ReLU(inplace=True),
nn.Conv1d(decode_channels, decode_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size - 1) // 2, bias=bias),
nn.ReLU(inplace=True),
nn.Conv1d(decode_channels, decode_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size - 1) // 2, bias=bias)
)
# Final convolution to map decode_channels to output_channels
self.final_conv = nn.Conv1d(
in_channels=decode_channels,
out_channels=output_channels,
kernel_size=kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
bias=False
)
def forward(self, z):
# z: (Batch, Code_dim, Length)
x = self.initial_conv(z) # (Batch, Decode_channels, Length)
x = self.residual_blocks(x) + x # Residual connection
x = self.final_conv(x) # (Batch, Output_channels, Length)
return x |