File size: 9,982 Bytes
574a515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import sys
 
import torch
from torch import nn
import numpy as np
from vq.module import WNConv1d, EncoderBlock, ResLSTM
from vq.alias_free_torch import *
from vq import activations
from vq.bs_roformer5 import TransformerBlock
 
from torchtune.modules import RotaryPositionalEmbeddings
import vq.blocks as blocks
from torch.nn import utils
def init_weights(m):
    if isinstance(m, nn.Conv1d):
        nn.init.trunc_normal_(m.weight, std=0.02)
        nn.init.constant_(m.bias, 0)

class CodecEncoder(nn.Module):
    def __init__(self,
                ngf=48,
                use_rnn=True,
                rnn_bidirectional=False,
                rnn_num_layers=2,
                up_ratios=(2, 2, 4, 4, 5),
                dilations=(1, 3, 9),
                out_channels=1024):
        super().__init__()
        self.hop_length = np.prod(up_ratios)
        self.ngf = ngf
        self.up_ratios = up_ratios

        # Create first convolution
        d_model = ngf
        self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]

        # Create EncoderBlocks that double channels as they downsample by `stride`
        for i, stride in enumerate(up_ratios):
            d_model *= 2
            self.block += [EncoderBlock(d_model, stride=stride, dilations=dilations)]
        # RNN
        if use_rnn:
            self.block += [
                ResLSTM(d_model,
                        num_layers=rnn_num_layers,
                        bidirectional=rnn_bidirectional
                    )
            ]
        # Create last convolution
        self.block += [
            Activation1d(activation=activations.SnakeBeta(d_model, alpha_logscale=True)),
            WNConv1d(d_model, out_channels, kernel_size=3, padding=1),
        ]

        # Wrap black into nn.Sequential
        self.block = nn.Sequential(*self.block)
        self.enc_dim = d_model
        
        self.reset_parameters()

    def forward(self, x):
        out = self.block(x)
        return out

    def inference(self, x):
        return self.block(x)

    def remove_weight_norm(self):
        """Remove weight normalization module from all of the layers."""

        def _remove_weight_norm(m):
            try:
                torch.nn.utils.remove_weight_norm(m)
            except ValueError:  # this module didn't have weight norm
                return

        self.apply(_remove_weight_norm)

    def apply_weight_norm(self):
        """Apply weight normalization module from all of the layers."""

        def _apply_weight_norm(m):
            if isinstance(m, nn.Conv1d):
                torch.nn.utils.weight_norm(m)

        self.apply(_apply_weight_norm)

    def reset_parameters(self):
        self.apply(init_weights)


class Transpose(nn.Module):
    def __init__(self, dim1, dim2):
        super(Transpose, self).__init__()
        self.dim1 = dim1
        self.dim2 = dim2

    def forward(self, x):
        return x.transpose(self.dim1, self.dim2)

class CodecEncoder_Transformer(nn.Module):
    def __init__(self,
                ngf=48,
                up_ratios=[2, 2, 4, 4, 5],
                dilations=(1, 3, 9),
                hidden_dim=1024,
                depth=12,
                heads=12,
                pos_meb_dim=64,
                ):
        super().__init__()
        self.hop_length = np.prod(up_ratios)
        self.ngf =ngf
        self.up_ratios = up_ratios
 
        d_model = ngf
        self.conv_blocks = [WNConv1d(1, d_model, kernel_size=7, padding=3)]

 
        for i, stride in enumerate(up_ratios): 
            d_model *= 2 
            self.conv_blocks += [EncoderBlock(d_model, stride=stride, dilations=dilations)]
 
        self.conv_blocks = nn.Sequential(*self.conv_blocks)
 
        
        # time_rotary_embed = RotaryPositionalEmbeddings(dim=pos_meb_dim)
        
 
        # transformer_blocks = [
        #     TransformerBlock(dim=hidden_dim, n_heads=heads, rotary_embed=time_rotary_embed)
        #     for _ in range(depth)
        # ]
        
 
        # self.transformers = nn.Sequential(*transformer_blocks)

        # self.final_layer_norm = nn.LayerNorm(hidden_dim, eps=1e-6)

        self.conv_final_block  = [
        Activation1d(activation=activations.SnakeBeta(d_model, alpha_logscale=True)),
        WNConv1d(d_model, hidden_dim, kernel_size=3, padding=1),
        ]
        self.conv_final_block = nn.Sequential(*self.conv_final_block)
        
        self.reset_parameters()

    def forward(self, x):
        x = self.conv_blocks(x)
        # x = x.permute(0, 2, 1)
        # x= self.transformers(x)
        # x = self.final_layer_norm(x)
        # x = x.permute(0, 2, 1)
        x =  self.conv_final_block (x)
        x = x.permute(0, 2, 1)
        return x

    def inference(self, x):
        return self.block(x)

    def remove_weight_norm(self):
        """Remove weight normalization module from all of the layers."""

        def _remove_weight_norm(m):
            try:
                torch.nn.utils.remove_weight_norm(m)
            except ValueError:  # this module didn't have weight norm
                return

        self.apply(_remove_weight_norm)

    def apply_weight_norm(self):
        """Apply weight normalization module from all of the layers."""

        def _apply_weight_norm(m):
            if isinstance(m, nn.Conv1d):
                torch.nn.utils.weight_norm(m)

        self.apply(_apply_weight_norm)

    def reset_parameters(self):
        self.apply(init_weights)



class Codec_oobleck_Transformer(nn.Module):
    def __init__(self,
                ngf=32,
                up_ratios=(2, 2,4,4, 5),
                dilations=(1, 3, 9),
                hidden_dim=1024,
                depth=12,
                heads=16,
                pos_meb_dim=64,
                ):
        super().__init__()
        self.hop_length = np.prod(up_ratios)
        self.ngf =ngf
        self.up_ratios = up_ratios
        self.hidden_dim = hidden_dim
         

        self.conv_blocks =  blocks.DilatedResidualEncoder(
        capacity=ngf,
        dilated_unit=self.dilated_unit,
        downsampling_unit=self.downsampling_unit,
        ratios=up_ratios,
        dilations=dilations,
        pre_network_conv=self.pre_conv,
        post_network_conv=self.post_conv,
    )
 
        
        time_rotary_embed = RotaryPositionalEmbeddings(dim=pos_meb_dim)
         
        transformer_blocks = [
            TransformerBlock(dim=hidden_dim, n_heads=heads, rotary_embed=time_rotary_embed)
            for _ in range(depth)
        ]        
 
        self.transformers = nn.Sequential(*transformer_blocks)

        self.final_layer_norm = nn.LayerNorm(hidden_dim, eps=1e-6)
 
        
        self.reset_parameters()

    def forward(self, x):
        x = self.conv_blocks(x)
        x = x.permute(0, 2, 1)
        x= self.transformers(x)
        x = self.final_layer_norm(x)
        return x

    def inference(self, x):
        return self.block(x)

    def remove_weight_norm(self):
        """Remove weight normalization module from all of the layers."""

        def _remove_weight_norm(m):
            try:
                torch.nn.utils.remove_weight_norm(m)
            except ValueError:  # this module didn't have weight norm
                return

        self.apply(_remove_weight_norm)

    def apply_weight_norm(self):
        """Apply weight normalization module from all of the layers."""

        def _apply_weight_norm(m):
            if isinstance(m, nn.Conv1d):
                torch.nn.utils.weight_norm(m)

        self.apply(_apply_weight_norm)

    def reset_parameters(self):
        self.apply(init_weights)

    def dilated_unit(self,hidden_dim, dilation):
        return blocks.DilatedConvolutionalUnit(hidden_dim,
                                               dilation,
                                               kernel_size=3,
                                               activation=nn.ReLU,
                                               normalization=utils.weight_norm)

    def downsampling_unit(self, input_dim: int, output_dim: int, stride: int):
        return blocks.DownsamplingUnit(input_dim,
                                       output_dim,
                                       stride,
                                       nn.ReLU,
                                       normalization=utils.weight_norm)

    def pre_conv(self,out_channels):
        return nn.Conv1d(1, out_channels, 1)

    def post_conv(self,in_channels):
        return nn.Conv1d(in_channels, self.hidden_dim, 1)





class CodecEncoder_only_Transformer(nn.Module):
    def __init__(self,hidden_dim=1024,depth=12,heads=16,pos_meb_dim=64):
        super().__init__()
        # self.embed = nn.Linear(input_dim, hidden_dim )input_dim=300,

        depth = depth
        time_rotary_embed = RotaryPositionalEmbeddings(dim=pos_meb_dim)
        
 
        transformer_blocks = [
            TransformerBlock(dim=hidden_dim, n_heads=heads, rotary_embed=time_rotary_embed)
            for _ in range(depth)
        ]
        
 
        self.transformers = nn.Sequential(*transformer_blocks)

        self.final_layer_norm = nn.LayerNorm(hidden_dim, eps=1e-6)

    def forward(self, x: torch.Tensor ) -> torch.Tensor:
        # x = self.embed(x)
 
 
        x= self.transformers(x)
        x = self.final_layer_norm(x)
 
        return x




 


def get_model_size(model):
    # 计算总参数数
    total_params = sum(p.numel() for p in model.parameters())
    
    # 假设每个参数都是32位浮点数,计算模型大小(以字节为单位)
    model_size_bytes = total_params    # 每个参数4字节
    
    # 转换为更易读的单位(例如,MB)
    model_size_mb = model_size_bytes / (1024 ** 2)
    
    return total_params, model_size_mb

if __name__ == '__main__':
    model = Codec_oobleck_Transformer()
    x = torch.randn(1, 1, 16000)  # example input tensor
    output = model(x)
    print("Output shape:", output.shape)