--- license: apache-2.0 --- [Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU). It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks. Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana). ## CLIP model HPU configuration This model only contains the `GaudiConfig` file for running CLIP-like models (e.g. [this one](https://huggingface.co/openai/clip-vit-large-patch14)) on Habana's Gaudi processors (HPU). **This model contains no model weights, only a GaudiConfig.** This enables to specify: - `use_fused_adam`: whether to use Habana's custom AdamW implementation - `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator - `use_torch_autocast`: whether to use Torch Autocast for managing mixed precision ## Usage The model is instantiated the same way as in the Transformers library. The only difference is that there are a few new training arguments specific to HPUs.\ It is strongly recommended to train this model doing bf16 mixed-precision training for optimal performance and accuracy. [Here](https://github.com/huggingface/optimum-habana/blob/main/examples/contrastive-image-text) is an example script to fine-tune a model on COCO. Use it as follows: 1. You first need to download the dataset: ```bash mkdir data cd data wget http://images.cocodataset.org/zips/train2017.zip wget http://images.cocodataset.org/zips/val2017.zip wget http://images.cocodataset.org/zips/test2017.zip wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip wget http://images.cocodataset.org/annotations/image_info_test2017.zip cd .. ``` 2. Then, you can create a model from pretrained vision and text decoder models: ```python from transformers import ( VisionTextDualEncoderModel, VisionTextDualEncoderProcessor, AutoTokenizer, AutoImageProcessor ) model = VisionTextDualEncoderModel.from_vision_text_pretrained( "openai/clip-vit-large-patch14", "roberta-large" ) tokenizer = AutoTokenizer.from_pretrained("roberta-large") image_processor = AutoImageProcessor.from_pretrained("openai/clip-vit-large-patch14") processor = VisionTextDualEncoderProcessor(image_processor, tokenizer) # save the model and processor model.save_pretrained("clip-roberta") processor.save_pretrained("clip-roberta") ``` 3. Finally, you can run it with the following command: ```bash python run_clip.py \ --output_dir ./clip-roberta-finetuned \ --model_name_or_path ./clip-roberta \ --data_dir $PWD/data \ --dataset_name ydshieh/coco_dataset_script \ --dataset_config_name=2017 \ --image_column image_path \ --caption_column caption \ --remove_unused_columns=False \ --do_train --do_eval \ --per_device_train_batch_size="16" \ --per_device_eval_batch_size="16" \ --learning_rate="5e-5" --warmup_steps="0" --weight_decay 0.1 \ --overwrite_output_dir \ --save_strategy epoch \ --use_habana \ --use_lazy_mode \ --use_hpu_graphs \ --gaudi_config_name Habana/clip \ --throughput_warmup_steps 2 \ --bf16 ``` Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.