File size: 2,075 Bytes
95e6ca0 12c5034 d524bb4 12c5034 29280a5 12c5034 10d236f 9332301 10d236f 6df0215 12c5034 10d236f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
license: apache-2.0
---
[Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU).
It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks.
Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana).
## T5 model HPU configuration
This model only contains the `GaudiConfig` file for running the [T5](https://huggingface.co/t5-base) model on Habana's Gaudi processors (HPU).
**This model contains no model weights, only a GaudiConfig.**
This enables to specify:
- `use_fused_adam`: whether to use Habana's custom AdamW implementation
- `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator
## Usage
The model is instantiated the same way as in the Transformers library.
The only difference is that there are a few new training arguments specific to HPUs.
[Here](https://github.com/huggingface/optimum-habana/blob/main/examples/summarization/run_summarization.py) is a summarization example script to fine-tune a model. You can run it with T5-small with the following command:
```bash
python run_summarization.py \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--predict_with_generate \
--use_habana \
--use_lazy_mode \
--gaudi_config_name Habana/t5 \
--ignore_pad_token_for_loss False \
--pad_to_max_length \
--save_strategy epoch \
--throughput_warmup_steps 3
```
Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.
|