File size: 2,159 Bytes
abbe65b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
tags:
- generated_from_trainer
model-index:
- name: BitNet-based-Llama2-jp-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BitNet-based-Llama2-jp-test
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 92.3872
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 156
- eval_batch_size: 156
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 92.3586 | 0.06 | 100 | 92.3876 |
| 92.3629 | 0.12 | 200 | 92.3877 |
| 92.3395 | 0.18 | 300 | 92.3753 |
| 92.3229 | 0.24 | 400 | 92.3346 |
| 92.3158 | 0.3 | 500 | 92.3378 |
| 92.3411 | 0.36 | 600 | 92.3068 |
| 92.3362 | 0.42 | 700 | 92.3086 |
| 92.3304 | 0.48 | 800 | 92.3751 |
| 92.3344 | 0.55 | 900 | 92.3510 |
| 92.3355 | 0.61 | 1000 | 92.3283 |
| 92.3628 | 0.67 | 1100 | 92.3356 |
| 92.337 | 0.73 | 1200 | 92.3693 |
| 92.3825 | 0.79 | 1300 | 92.3734 |
| 92.3569 | 0.85 | 1400 | 92.2878 |
| 92.3633 | 0.91 | 1500 | 92.3738 |
| 92.3392 | 0.97 | 1600 | 92.3872 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.2.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|