File size: 2,739 Bytes
1140536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccae532
 
1140536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
tags:
- generated_from_trainer
model-index:
- name: Llama2-jp-123M
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama2-jp-123M

This model was built by referring to the config in [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0), 123M The model is a pre-trained Llama2 of Parameters with only 1 epoch on a Japanese dataset. 
The dataset used is [range3/wiki40b-ja](https://huggingface.co/datasets/range3/wiki40b-ja).
- Loss: 2.6296

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 156
- eval_batch_size: 156
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 4.4744        | 0.04  | 1000  | 3.5915          |
| 3.4036        | 0.08  | 2000  | 3.2836          |
| 3.2088        | 0.12  | 3000  | 3.1575          |
| 3.1151        | 0.16  | 4000  | 3.0811          |
| 3.0471        | 0.2   | 5000  | 3.0247          |
| 3.0006        | 0.24  | 6000  | 2.9798          |
| 2.9581        | 0.28  | 7000  | 2.9409          |
| 2.9187        | 0.32  | 8000  | 2.9103          |
| 2.8899        | 0.36  | 9000  | 2.8805          |
| 2.8603        | 0.4   | 10000 | 2.8523          |
| 2.8329        | 0.44  | 11000 | 2.8259          |
| 2.8068        | 0.48  | 12000 | 2.8011          |
| 2.7825        | 0.52  | 13000 | 2.7782          |
| 2.7601        | 0.56  | 14000 | 2.7567          |
| 2.7384        | 0.6   | 15000 | 2.7362          |
| 2.7194        | 0.64  | 16000 | 2.7164          |
| 2.6986        | 0.68  | 17000 | 2.6973          |
| 2.683         | 0.72  | 18000 | 2.6810          |
| 2.667         | 0.76  | 19000 | 2.6664          |
| 2.6511        | 0.8   | 20000 | 2.6540          |
| 2.6421        | 0.84  | 21000 | 2.6441          |
| 2.6312        | 0.88  | 22000 | 2.6369          |
| 2.6286        | 0.92  | 23000 | 2.6322          |
| 2.6234        | 0.96  | 24000 | 2.6301          |
| 2.6216        | 1.0   | 25000 | 2.6296          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2