File size: 2,722 Bytes
2b9e1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
tags:
- generated_from_trainer
model-index:
- name: myBit-Llama2-jp-127M-test-3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# myBit-Llama2-jp-127M-test-3

This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.8378

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2.4e-05
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- lr_scheduler_warmup_steps: 250
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 10.1753       | 0.04  | 100  | 9.3900          |
| 9.0259        | 0.07  | 200  | 8.5694          |
| 8.0861        | 0.11  | 300  | 7.5814          |
| 7.2827        | 0.15  | 400  | 7.0210          |
| 6.9154        | 0.18  | 500  | 6.7973          |
| 6.738         | 0.22  | 600  | 6.6274          |
| 6.6074        | 0.26  | 700  | 6.5311          |
| 6.5101        | 0.29  | 800  | 6.4338          |
| 6.4433        | 0.33  | 900  | 6.3696          |
| 6.382         | 0.36  | 1000 | 6.3051          |
| 6.3157        | 0.4   | 1100 | 6.2578          |
| 6.2805        | 0.44  | 1200 | 6.2139          |
| 6.2317        | 0.47  | 1300 | 6.1715          |
| 6.2085        | 0.51  | 1400 | 6.1438          |
| 6.1702        | 0.55  | 1500 | 6.1099          |
| 6.1337        | 0.58  | 1600 | 6.0789          |
| 6.113         | 0.62  | 1700 | 6.0530          |
| 6.0663        | 0.66  | 1800 | 6.0150          |
| 6.0446        | 0.69  | 1900 | 5.9880          |
| 6.0267        | 0.73  | 2000 | 5.9568          |
| 5.9972        | 0.77  | 2100 | 5.9274          |
| 5.9599        | 0.8   | 2200 | 5.9109          |
| 5.9369        | 0.84  | 2300 | 5.8884          |
| 5.9266        | 0.88  | 2400 | 5.8689          |
| 5.9068        | 0.91  | 2500 | 5.8548          |
| 5.9091        | 0.95  | 2600 | 5.8462          |
| 5.879         | 0.99  | 2700 | 5.8378          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2