Initial commit
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -1
- a2c-AntBulletEnv-v0/data +48 -49
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- a2c-AntBulletEnv-v0/system_info.txt +5 -5
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 750.64 +/- 117.88
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d4d50c84356b39c5182240c412f517bb72e71ddbc6bcee63b799b701d934b0c
|
3 |
+
size 129296
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.8.
|
|
|
1 |
+
1.8.0a2
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,22 +4,22 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
-
"verbose":
|
23 |
"policy_kwargs": {
|
24 |
":type:": "<class 'dict'>",
|
25 |
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
@@ -32,21 +32,48 @@
|
|
32 |
"weight_decay": 0
|
33 |
}
|
34 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
"num_timesteps": 2000000,
|
36 |
"_total_timesteps": 2000000,
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
-
"start_time":
|
41 |
-
"learning_rate": 0.
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
44 |
":type:": "<class 'function'>",
|
45 |
-
":serialized:": "
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
-
":serialized:": "
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -54,16 +81,15 @@
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
-
":serialized:": "
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
61 |
"sde_sample_freq": -1,
|
62 |
"_current_progress_remaining": 0.0,
|
63 |
-
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
-
":serialized:": "
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
@@ -76,32 +102,5 @@
|
|
76 |
"ent_coef": 0.0,
|
77 |
"vf_coef": 0.4,
|
78 |
"max_grad_norm": 0.5,
|
79 |
-
"normalize_advantage": false
|
80 |
-
"observation_space": {
|
81 |
-
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
-
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
-
"dtype": "float32",
|
84 |
-
"_shape": [
|
85 |
-
28
|
86 |
-
],
|
87 |
-
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
-
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
-
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
-
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
-
"_np_random": null
|
92 |
-
},
|
93 |
-
"action_space": {
|
94 |
-
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
-
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
-
"dtype": "float32",
|
97 |
-
"_shape": [
|
98 |
-
8
|
99 |
-
],
|
100 |
-
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
-
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
-
"bounded_below": "[ True True True True True True True True]",
|
103 |
-
"bounded_above": "[ True True True True True True True True]",
|
104 |
-
"_np_random": null
|
105 |
-
},
|
106 |
-
"n_envs": 4
|
107 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3cbc320790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3cbc320820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3cbc3208b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3cbc320940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3cbc3209d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3cbc320a60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3cbc320af0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3cbc320b80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3cbc320c10>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3cbc320ca0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3cbc320d30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3cbc320dc0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3cbc50b200>"
|
21 |
},
|
22 |
+
"verbose": 1,
|
23 |
"policy_kwargs": {
|
24 |
":type:": "<class 'dict'>",
|
25 |
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
|
|
32 |
"weight_decay": 0
|
33 |
}
|
34 |
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
"num_timesteps": 2000000,
|
63 |
"_total_timesteps": 2000000,
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
+
"start_time": 1683677836311692961,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
71 |
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2hhaWRlci9taW5jb25kYTMvdWJ1bnR1L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvaGFpZGVyL21pbmNvbmRhMy91YnVudHUvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGw2jb0ktO6/G0sAv3EyNj/3NNk/ONiAvxnoNT+U8oS9//Gwv2IyCT8AE8U+4bWMv+OR1L+4zeq/mVTqvi43Tr9Kc4O/5nJdP9PHmj4byOu9IDxuvwrQjj/ZCAq/Lay5v/QivD4Z75g+7jyKPuzDnz4nlFe9cFjMv0+uO74aKlq9Sf+KPwQaxD3FTIs+Vp0HPm99rL0pQnM/77ktPjX5n72f8YE/Iu+svDSr3b0meAk9IjAmvxdkzj1uDyk9SQlzOseSnj/4i+i+Q9xavtG6gb30Irw+Ge+YPu48ij7sw58++ucdQPZ13r7Ln+o+LbKLQDBiQD5aZRTAbLVrvxwLjr/vYHc/2yjNPp60aECYyzhAN/0cP2W51D9PjEu/Cg+pvwQgQT5jqt2/qJcWwBM+0z/Yt2M/yo2wv2csMb98iu849CK8PitDVsDuPIo+zxlNwASmxD87nk2/5sO5Pkm0rL7CB6G9dvjpPWqsyj9+eqK+0D+IPy2uWLyhamVAtIVVvG7vm74x1GO/YSS7v8CGAr+znIi/D1DHPCRNMr8Wg4I9vZ6zvqtworydyRE9CmktvfQivD4rQ1bA7jyKPuzDnz6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA3q0s2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAnipHPQAAAAC4x/a/AAAAAP3uJz0AAAAALSTmPwAAAACD2AY+AAAAALZK4D8AAAAAMOdKvAAAAACF4d+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDkKNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBUM6rwAAAAASfjfvwAAAACOyKo8AAAAAGDa9T8AAAAAymgAPgAAAAB7EvU/AAAAAGQ6oz0AAAAAc53ovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANUggTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAuuuY9AAAAAM1C878AAAAAYAnPPQAAAABYvts/AAAAAGNf4T0AAAAAYVXoPwAAAAAUpoG9AAAAAAgD8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZWFQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1HW8vQAAAAD4yf+/AAAAAL6GkbsAAAAAee3/PwAAAAC6dgU+AAAAANM59D8AAAAA8muiPQAAAAA1/eq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
88 |
"sde_sample_freq": -1,
|
89 |
"_current_progress_remaining": 0.0,
|
|
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIc17HlwLmaMAWyUTegDjAF0lEdAptOHp4bCJ3V9lChoBkdAhxG9/SYw7GgHTegDaAhHQKbU3a3Zwn91fZQoaAZHQIblesvIwM9oB03oA2gIR0Cm110QbuMNdX2UKGgGR0CHDajUutfYaAdN6ANoCEdAptiu9lEqlXV9lChoBkdAh76nXd0q6WgHTegDaAhHQKbfgPYnOSp1fZQoaAZHQIjUqpxWDHxoB03oA2gIR0Cm4MnKGL1mdX2UKGgGR0CJhTUBGQS0aAdN6ANoCEdApuNQ/Z/Tb3V9lChoBkdAiaT5iuuA7WgHTegDaAhHQKbkfKUVzp51fZQoaAZHQIh2G0zCUHJoB03oA2gIR0Cm628neBQOdX2UKGgGR0CKdBPNVzZIaAdN6ANoCEdApuyy90zTF3V9lChoBkdAi+KsY2sJY2gHTegDaAhHQKbvH9LHuJF1fZQoaAZHQIwzB+BpYcNoB03oA2gIR0Cm8F8mBvrGdX2UKGgGR0CLfelLOAy3aAdN6ANoCEdApvdeYjSofnV9lChoBkdAh5npfpljE2gHTegDaAhHQKb4su+yquN1fZQoaAZHQIpMG7FsHjZoB03oA2gIR0Cm+zT2exwAdX2UKGgGR0CMgxkRSP2gaAdN6ANoCEdApvyMhFEy+HV9lChoBkdAihqNknTiKmgHTegDaAhHQKcDoml67d11fZQoaAZHQIqx+NFSbYtoB03oA2gIR0CnBNyS/0uldX2UKGgGR0CKTuwPAfuDaAdN6ANoCEdApwdSWiUPhHV9lChoBkdAiaQ94eLeh2gHTegDaAhHQKcImHYYixF1fZQoaAZHQIHOmuFHrhRoB03oA2gIR0CnD2pJXhfjdX2UKGgGR0CJkFXg9/z8aAdN6ANoCEdApxClX3g1nHV9lChoBkdAi4CMtTUAk2gHTegDaAhHQKcTE/yoXKt1fZQoaAZHQIxZNTxXnyNoB03oA2gIR0CnFGk5hjOLdX2UKGgGR0CIYcFwDNhWaAdN6ANoCEdApxtCeqaPS3V9lChoBkdAiwTf9gnc+WgHTegDaAhHQKcceeU6gdx1fZQoaAZHQIrtm5jH4oJoB03oA2gIR0CnHwHs9jgAdX2UKGgGR0CIlNqUNayKaAdN6ANoCEdApyBOMju8b3V9lChoBkdAirtgxagVXWgHTegDaAhHQKcnMkv9LpR1fZQoaAZHQIgYKeK8+RpoB03oA2gIR0CnKIRDTjNqdX2UKGgGR0CKUZFqBVdYaAdN6ANoCEdApyr1dszl93V9lChoBkdAjEa3q7iAD2gHTegDaAhHQKcsNIjGDL91fZQoaAZHQIuOG1Bt1p1oB03oA2gIR0CnMvghB7eEdX2UKGgGR0CI7zjBl+VkaAdN6ANoCEdApzQywIMSb3V9lChoBkdAigMm6XjU/mgHTegDaAhHQKc2mO/+Kj11fZQoaAZHQIrDmf29L6FoB03oA2gIR0CnN/mFSKm9dX2UKGgGR0CGWr7VrhzeaAdN6ANoCEdApz8VeY2KmHV9lChoBkdAiXgg7YChe2gHTegDaAhHQKdAVy8SPEN1fZQoaAZHQIjCuJm/WUdoB03oA2gIR0CnQtRDkU9IdX2UKGgGR0CLqFTzd1uBaAdN6ANoCEdAp0QeNvOyFHV9lChoBkdAi5PJ7b+LnGgHTegDaAhHQKdK/QE6kqN1fZQoaAZHQInNBl18stloB03oA2gIR0CnTEKR2bG4dX2UKGgGR0CKv41FYuCgaAdN6ANoCEdAp07L5RCQcXV9lChoBkdAjItOTaCcw2gHTegDaAhHQKdQBq8Djip1fZQoaAZHQIyPE0HhS+BoB03oA2gIR0CnVtQqAjIJdX2UKGgGR0CLqHhQWN3oaAdN6ANoCEdAp1gPai9Iw3V9lChoBkdAi8WGiHqNZWgHTegDaAhHQKdafA8B+4N1fZQoaAZHQIvuUYqG1x9oB03oA2gIR0CnW7mwiaAndX2UKGgGR0CMU0uTzND/aAdN6ANoCEdAp2KAlt0mt3V9lChoBkdAh1O4QBgeBGgHTegDaAhHQKdjw6jFhod1fZQoaAZHQIoB8MspXp5oB03oA2gIR0CnZkoqTbFkdX2UKGgGR0CIqdc7hegMaAdN6ANoCEdAp2d/CO3lS3V9lChoBkdAiXG+7L+xW2gHTegDaAhHQKduoVyFPBV1fZQoaAZHQId+nQY1pCdoB03oA2gIR0Cnb+aUJOWTdX2UKGgGR0CNbCaef7JoaAdN6ANoCEdAp3JRJ7LMcXV9lChoBkdAjSiI3R5TqGgHTegDaAhHQKdzndcB2fV1fZQoaAZHQIrkrOTq0MRoB03oA2gIR0CnepYYR/VidX2UKGgGR0CJYwDhcZ+AaAdN6ANoCEdAp3vBsj3VTnV9lChoBkdAieH+pXIU8GgHTegDaAhHQKd+LYYixFB1fZQoaAZHQIi+ehXbM5hoB03oA2gIR0Cnf3EjgQ6IdX2UKGgGR0CJZAXzlLezaAdN6ANoCEdAp4Y1mUW2w3V9lChoBkdAiRx+2uxKQWgHTegDaAhHQKeHaxoIv8J1fZQoaAZHQIn2PfEXLvFoB03oA2gIR0CnidnPNVzZdX2UKGgGR0CMSPio86mwaAdN6ANoCEdAp4sU4Nqgy3V9lChoBkdAjFnC7K7qZGgHTegDaAhHQKeSBBPbfxd1fZQoaAZHQIoCQ4CIUJxoB03oA2gIR0Cnk07DEWIodX2UKGgGR0CHPmFGG21EaAdN6ANoCEdAp5XCfHxSYXV9lChoBkdAit+9ORDCxmgHTegDaAhHQKeXD4k/r0J1fZQoaAZHQImrREMLF4toB03oA2gIR0CnnhVy3kPudX2UKGgGR0CK0Zq0MPSVaAdN6ANoCEdAp59sxZdOZnV9lChoBkdAiij1G0/nn2gHTegDaAhHQKeh4qHXVb11fZQoaAZHQIi5h1q33HtoB03oA2gIR0Cnoyw4jrzHdX2UKGgGR0CL8wdNnGsFaAdN6ANoCEdAp6n4Qg9vCXV9lChoBkdAiVr1YZEUkGgHTegDaAhHQKerOzlcQiB1fZQoaAZHQIz/hyZKFqVoB03oA2gIR0CnraH+qBEsdX2UKGgGR0CMAkyxA0KraAdN6ANoCEdAp67qmTC+DnV9lChoBkdAhP6GGmDUVmgHTegDaAhHQKe1xAsTWXl1fZQoaAZHQI0tMadc0LtoB03oA2gIR0Cntv/vOQhfdX2UKGgGR0CMsVEofCAMaAdN6ANoCEdAp7mEyULUkXV9lChoBkdAjA5+BH09Q2gHTegDaAhHQKe6ypGWldl1fZQoaAZHQItIIcT8HfNoB03oA2gIR0CnwhNgSeyzdX2UKGgGR0CKQtRE4NqhaAdN6ANoCEdAp8OL6SDAanV9lChoBkdAithisGPgemgHTegDaAhHQKfGX8VpKz11fZQoaAZHQIx/QkqtozxoB03oA2gIR0Cnx7EaMrEtdX2UKGgGR0CMienv2GqQaAdN6ANoCEdAp86gYP5HmXV9lChoBkdAhbTEB0ZFX2gHTegDaAhHQKfP37TlT3t1fZQoaAZHQIylnP1L8JloB03oA2gIR0Cn0lPBJqZddX2UKGgGR0CL6H39JjDsaAdN6ANoCEdAp9OdqSHM2XV9lChoBkdAhrUomw7kn2gHTegDaAhHQKfaje8f3ex1fZQoaAZHQIrigrWiDdxoB03oA2gIR0Cn2+lwcYIjdX2UKGgGR0CJGTH3lCC0aAdN6ANoCEdAp95jSPU8WHV9lChoBkdAh/f9fkWAPWgHTegDaAhHQKffuY6XBxh1fZQoaAZHQIg6taKUFB9oB03oA2gIR0Cn5tPuogmrdX2UKGgGR0CKEN6Hj6vaaAdN6ANoCEdAp+gThm5DqnV9lChoBkdAiVyvf0mMO2gHTegDaAhHQKfqi7Ciypt1fZQoaAZHQIozAR9PUKBoB03oA2gIR0Cn6+Gza9K3dX2UKGgGR0CMbLLGJemfaAdN6ANoCEdAp/LlmcvugHV9lChoBkdAjVXLgn+hoWgHTegDaAhHQKf0GjbBXS11fZQoaAZHQIqHy+36Q/5oB03oA2gIR0Cn9n8kMTewdX2UKGgGR0CNV/UIcBEKaAdN6ANoCEdAp/fG4kNWl3VlLg=="
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
|
|
102 |
"ent_coef": 0.0,
|
103 |
"vf_coef": 0.4,
|
104 |
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4dd828bc3b135ebcf93288fccbad5b2a52f835c1b0ebba5142e19ff4fa0b4f6e
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56894
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05dfb75291e9b9efe8f610c22af3aa073adb7957d3670ff97e04981f87ebd83c
|
3 |
size 56894
|
a2c-AntBulletEnv-v0/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.10.
|
2 |
-
- Python: 3.9
|
3 |
-
- Stable-Baselines3: 1.8.
|
4 |
-
- PyTorch:
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Apr 2 22:23:49 UTC 2021
|
2 |
+
- Python: 3.10.9
|
3 |
+
- Stable-Baselines3: 1.8.0a2
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2fbc101f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2fbc104040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2fbc1040d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2fbc104160>", "_build": "<function ActorCriticPolicy._build at 0x7f2fbc1041f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2fbc104280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2fbc104310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2fbc1043a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2fbc104430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2fbc1044c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2fbc104550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2fbc1045e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2fbc103a40>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682549206979084829, "learning_rate": 0.0096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/g6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKIkWz9frFS/gqzXPr+5A78Yyb4+PU81vZN4YT8WaE2/iIB8vrfWFb/2odY/QDc0P0aCdr//MJi/jHajv5qdTT0e03q/t41YPBzyzz6O3H0+tkufP4mkAL5DA1w/7Q2mvfiP9b+P8BI/1vkaPxPP5D6y9oI+ZZdlPU1aGz/Xriu+QJUtPwXu1r4vgJg/pr9Zvoomgr41FNW/BjakP6x8WzwvhY++SNWtv5THUL7mXALArwDqvsxmFj8TINE+FpnUPjCWnz8b06e8PfThvqXsicDNcAU/yQDfv9b5Gj8SNg/An2ukPrYEsz9t73O+s7IJv0kB7D8P7kM/YBDSPzZ2V73fM2i/VPvdv+th3T/cIGq9bkCHvwylsjwzr0u/9PNVv/b22L5Ns64+UBzOPlTibT5xIp4/fu+gvl0c0r74A7a+zXAFP8kA37/W+Ro/E8/kPrt8kr4pwBc/wLPtPs3N0L7HwD0/CwNUv7fbNL4vzZ0/WiaTP9FzCL9xxy6/g6OzvxABXT7Kvse/4zpUv2Bh6b5BMGC/pJ8IPx4/AcCUTkS/Em6Bv9QaA71V2wC/ruVuPc1wBT+P8BI/1vkaPxPP5D6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAiuiY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAoEbZuwAAAADMMdq/AAAAALpLnDwAAAAA2OX2PwAAAADb1uU8AAAAAMaS/z8AAAAAWlhivQAAAAA7Atu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+A0zNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHYVIL0AAAAAucDyvwAAAADABVA7AAAAALP99j8AAAAAqw9kPQAAAABcSvg/AAAAAD3qhz0AAAAAjS37vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPcklLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDcix89AAAAAMyK4b8AAAAAZz++vQAAAACrots/AAAAAMCCD74AAAAAfDf2PwAAAACx7a+9AAAAAD1k778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDU541AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJ37mPQAAAADbweK/AAAAAGhgOj0AAAAAukLtPwAAAADl3dU9AAAAAH372z8AAAAAjIlavAAAAAAXb/a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG5hUHIIWxiMAWyUTegDjAF0lEdAsPeKDlHSW3V9lChoBkdAc/eZ1V5rxmgHTegDaAhHQLD69fHPu5V1fZQoaAZHQHEhlTFVDKJoB03oA2gIR0Cw/ENXYDkmdX2UKGgGR0BX4GjO9nK5aAdLo2gIR0Cw/dVvQ4S6dX2UKGgGR0Bxg/9qDbrUaAdN6ANoCEdAsP4T6XSjQHV9lChoBkdAdWOvUBnzx2gHTegDaAhHQLD/CbVBlc11fZQoaAZHQHWi3PVurIZoB03oA2gIR0CxA4oJJGvwdX2UKGgGR0B0SZLvkRzzaAdN6ANoCEdAsQXZ/4Irv3V9lChoBkdAcdq+ueSSvGgHTegDaAhHQLEGAYSxqwh1fZQoaAZHQGwOm+0w8GNoB03oA2gIR0CxBumbLEDRdX2UKGgGR0BsSVITXarWaAdN6ANoCEdAsQyD+MqBmXV9lChoBkdAaiG0tyxRmGgHTegDaAhHQLEQOoUi6hB1fZQoaAZHQHMRH1anrIJoB03oA2gIR0CxEH07jkuIdX2UKGgGR0Bya4+Y+jdpaAdN6ANoCEdAsRFhx6v7nHV9lChoBkdAdK8uk1uR92gHTegDaAhHQLEU03pfQa91fZQoaAZHQHXCALqlgtxoB03oA2gIR0CxFxPU8V59dX2UKGgGR0Bx3+dmQKa5aAdN6ANoCEdAsRc577bcoHV9lChoBkdAdLulo11numgHTegDaAhHQLEX1hnanJl1fZQoaAZHQHJL0Kmbb11oB03oA2gIR0CxGztnkDISdX2UKGgGR0BxAXVDrqt6aAdN6ANoCEdAsR67GaQV9HV9lChoBkdAdRkur6tT1mgHTegDaAhHQLEfAoKUmlZ1fZQoaAZHQHPCV9ORDCxoB03oA2gIR0CxIA5SzgMudX2UKGgGR0Bz3Na8pTddaAdN6ANoCEdAsSPX3WWhRXV9lChoBkdAcYpNfw7T2GgHTegDaAhHQLEmKlUIcBF1fZQoaAZHQHJprvsqriloB03oA2gIR0CxJlbAUL2IdX2UKGgGR0Bz2fKdQO4HaAdN6ANoCEdAsScDvRZ2ZHV9lChoBkdAbxm/eLvTgGgHTbsDaAhHQLEqJD0Dlo11fZQoaAZHQGN1I9s7+1loB02kAmgIR0CxKsPbsWwedX2UKGgGR0BwlU1P3ztkaAdN6ANoCEdAsS2hh7Vrh3V9lChoBkdAcNW1R+BpYmgHTegDaAhHQLEu58B+4LF1fZQoaAZHQHOo7CiyprFoB03oA2gIR0CxMsL0Bfa6dX2UKGgGR0BxgiQA+6iCaAdN6ANoCEdAsTNxooNNJ3V9lChoBkdAXVNA8jiXIGgHTegDaAhHQLE1eHnlnyx1fZQoaAZHQHMPu6unuRdoB03oA2gIR0CxNjj6WPcSdX2UKGgGR0BmMCMBIWgwaAdNawNoCEdAsTiQXN1QqXV9lChoBkdAag1dsSCe3GgHTegDaAhHQLE5+XIEKVp1fZQoaAZHQG2f4zBRAKRoB03oA2gIR0CxPJdPDYRNdX2UKGgGR0B7+v6+FlCkaAdN6ANoCEdAsT3dA9mpVHV9lChoBkdAeVJO7QLNOmgHTegDaAhHQLFBH4QSSNh1fZQoaAZHQHAIsspXp4doB03oA2gIR0CxQoVaOgg6dX2UKGgGR0Bth0jcEeQuaAdN6ANoCEdAsUR2yC4Bm3V9lChoBkdAdhIXFLnLaGgHTegDaAhHQLFFQpRoAXF1fZQoaAZHQHPVtsabWmRoB03oA2gIR0CxR5xE4NqhdX2UKGgGR0Bzy3mJWNm2aAdN6ANoCEdAsUkRXIU8FXV9lChoBkdAdLdAXVLBbmgHTegDaAhHQLFLbuEEkjZ1fZQoaAZHQHXInmFJxvNoB03oA2gIR0CxTJRkI5YHdX2UKGgGR0BzSzFirksCaAdN6ANoCEdAsVA/rHEMs3V9lChoBkdAc4olUZNwi2gHTegDaAhHQLFRusbvPTp1fZQoaAZHQHEBz/6wdKdoB03oA2gIR0CxU7a8L8aXdX2UKGgGR0B2yxvYODraaAdN6ANoCEdAsVR2uB+WnnV9lChoBkdAca2+9rXUY2gHTegDaAhHQLFWubzK9wp1fZQoaAZHQHcCB7mdRSBoB03oA2gIR0CxWCTQVsUJdX2UKGgGR0B1AQMy8BdVaAdN6ANoCEdAsVo0WCVbA3V9lChoBkdAd6zPTXrdFmgHTegDaAhHQLFbWA/LTx51fZQoaAZHQHSWE690zTFoB03oA2gIR0CxXwtjslcAdX2UKGgGR0B3FhInSfDlaAdN6ANoCEdAsWCSAtnPFHV9lChoBkdAdW+kEcKgI2gHTegDaAhHQLFievRqoIh1fZQoaAZHQHpPKyOaOPxoB03oA2gIR0CxYzvWpZOjdX2UKGgGR0B6ICaEzwc6aAdN6ANoCEdAsWWLEwWWQnV9lChoBkdAcuaEKVpsXWgHTegDaAhHQLFm9yrgflp1fZQoaAZHQHWTnrQgLZ1oB03oA2gIR0CxaOU0Jng6dX2UKGgGR0Bxxo3o9s7/aAdNsANoCEdAsWlKT5ftyHV9lChoBkdAYlyB91EE1WgHTVUCaAhHQLFriLP2PDJ1fZQoaAZHQHTLCvgWJrNoB03oA2gIR0CxbXod+5OKdX2UKGgGR0AyTeVs1sLwaAdNIwJoCEdAsW7dML4N7XV9lChoBkdATuo7q6e5F2gHTXIBaAhHQLFvV9vS+g11fZQoaAZHQHO6WdAgPmRoB02CA2gIR0CxcMjCcf/4dX2UKGgGR0Bl0LUPQOWjaAdNWgJoCEdAsXK4al1r7HV9lChoBkdAdW7FZgXuV2gHTegDaAhHQLF0YsI3R5V1fZQoaAZHQHBfBbOeJ55oB03oA2gIR0CxdZJC4SYgdX2UKGgGR0BzQ8Xj2i+MaAdN6ANoCEdAsXcGVxCIDnV9lChoBkdAWnxvm5lOGmgHTeUBaAhHQLF3dF36hxp1fZQoaAZHQHPvdjkMkQhoB03oA2gIR0CxeQgZwXImdX2UKGgGR0BcK4nWrfcfaAdNSAFoCEdAsXnPqrzXjHV9lChoBkdAbF4ejmCAc2gHTegDaAhHQLF9s4sVclh1fZQoaAZHQHGjN6PbO/toB03oA2gIR0Cxf5vUz9CNdX2UKGgGR0Bxc03AEdNnaAdN6ANoCEdAsYGjvlU6xXV9lChoBkdAa2mtihFmWmgHTegDaAhHQLGCKXIEKVp1fZQoaAZHQHeCNYOlO45oB03oA2gIR0CxhJNTHbRGdX2UKGgGR0B28ox0uDjBaAdN6ANoCEdAsYYcXj2i+XV9lChoBkdAdmvfx+az/2gHTegDaAhHQLGIHHoX9BN1fZQoaAZHQHQNTz7MxGloB03oA2gIR0CxiJpCngpCdX2UKGgGR0B4gnLEDQqqaAdN6ANoCEdAsYxggpz90nV9lChoBkdAdywy3kPtlmgHTegDaAhHQLGOwKvV3EB1fZQoaAZHQHToz3M6ikBoB03oA2gIR0CxkNNwWFewdX2UKGgGR0B1Ngju8brDaAdN6ANoCEdAsZFXNJOFg3V9lChoBkdAccvqCHymRGgHTegDaAhHQLGTz+Yc/+t1fZQoaAZHQHMnUHUtqYZoB03oA2gIR0CxlVovalDXdX2UKGgGR0BqvWhqTKT0aAdN6ANoCEdAsZdr5uZTh3V9lChoBkdAcuA+MqBmPGgHTcIDaAhHQLGXs4LCvX91fZQoaAZHQHVoXl4keIVoB03oA2gIR0Cxm23hGYrsdX2UKGgGR0B4omAxzq8laAdN6ANoCEdAsZ3xOj7AL3V9lChoBkdAdvSXHzYmLWgHTegDaAhHQLGgGL39JjF1fZQoaAZHQHXYZAD7qIJoB03oA2gIR0CxoF1YuCf6dX2UKGgGR0B220aNuLrHaAdN6ANoCEdAsaMgYO2AoXV9lChoBkdAd4DN2ki2UmgHTegDaAhHQLGkoy08eS11fZQoaAZHQHcmviYLLIRoB03oA2gIR0CxpqNjgAIZdX2UKGgGR0B2EbQAuIykaAdN6ANoCEdAsabl6KLsKXV9lChoBkdAV0c1+AmReWgHTScBaAhHQLGouapxWDJ1fZQoaAZHQHTpZkPMB6toB03oA2gIR0Cxqk6ScLBsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3cbc320790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3cbc320820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3cbc3208b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3cbc320940>", "_build": "<function ActorCriticPolicy._build at 0x7f3cbc3209d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3cbc320a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3cbc320af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3cbc320b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3cbc320c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3cbc320ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3cbc320d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3cbc320dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3cbc50b200>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683677836311692961, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2hhaWRlci9taW5jb25kYTMvdWJ1bnR1L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvaGFpZGVyL21pbmNvbmRhMy91YnVudHUvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGw2jb0ktO6/G0sAv3EyNj/3NNk/ONiAvxnoNT+U8oS9//Gwv2IyCT8AE8U+4bWMv+OR1L+4zeq/mVTqvi43Tr9Kc4O/5nJdP9PHmj4byOu9IDxuvwrQjj/ZCAq/Lay5v/QivD4Z75g+7jyKPuzDnz4nlFe9cFjMv0+uO74aKlq9Sf+KPwQaxD3FTIs+Vp0HPm99rL0pQnM/77ktPjX5n72f8YE/Iu+svDSr3b0meAk9IjAmvxdkzj1uDyk9SQlzOseSnj/4i+i+Q9xavtG6gb30Irw+Ge+YPu48ij7sw58++ucdQPZ13r7Ln+o+LbKLQDBiQD5aZRTAbLVrvxwLjr/vYHc/2yjNPp60aECYyzhAN/0cP2W51D9PjEu/Cg+pvwQgQT5jqt2/qJcWwBM+0z/Yt2M/yo2wv2csMb98iu849CK8PitDVsDuPIo+zxlNwASmxD87nk2/5sO5Pkm0rL7CB6G9dvjpPWqsyj9+eqK+0D+IPy2uWLyhamVAtIVVvG7vm74x1GO/YSS7v8CGAr+znIi/D1DHPCRNMr8Wg4I9vZ6zvqtworydyRE9CmktvfQivD4rQ1bA7jyKPuzDnz6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA3q0s2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAnipHPQAAAAC4x/a/AAAAAP3uJz0AAAAALSTmPwAAAACD2AY+AAAAALZK4D8AAAAAMOdKvAAAAACF4d+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDkKNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBUM6rwAAAAASfjfvwAAAACOyKo8AAAAAGDa9T8AAAAAymgAPgAAAAB7EvU/AAAAAGQ6oz0AAAAAc53ovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANUggTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAuuuY9AAAAAM1C878AAAAAYAnPPQAAAABYvts/AAAAAGNf4T0AAAAAYVXoPwAAAAAUpoG9AAAAAAgD8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZWFQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1HW8vQAAAAD4yf+/AAAAAL6GkbsAAAAAee3/PwAAAAC6dgU+AAAAANM59D8AAAAA8muiPQAAAAA1/eq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIc17HlwLmaMAWyUTegDjAF0lEdAptOHp4bCJ3V9lChoBkdAhxG9/SYw7GgHTegDaAhHQKbU3a3Zwn91fZQoaAZHQIblesvIwM9oB03oA2gIR0Cm110QbuMNdX2UKGgGR0CHDajUutfYaAdN6ANoCEdAptiu9lEqlXV9lChoBkdAh76nXd0q6WgHTegDaAhHQKbfgPYnOSp1fZQoaAZHQIjUqpxWDHxoB03oA2gIR0Cm4MnKGL1mdX2UKGgGR0CJhTUBGQS0aAdN6ANoCEdApuNQ/Z/Tb3V9lChoBkdAiaT5iuuA7WgHTegDaAhHQKbkfKUVzp51fZQoaAZHQIh2G0zCUHJoB03oA2gIR0Cm628neBQOdX2UKGgGR0CKdBPNVzZIaAdN6ANoCEdApuyy90zTF3V9lChoBkdAi+KsY2sJY2gHTegDaAhHQKbvH9LHuJF1fZQoaAZHQIwzB+BpYcNoB03oA2gIR0Cm8F8mBvrGdX2UKGgGR0CLfelLOAy3aAdN6ANoCEdApvdeYjSofnV9lChoBkdAh5npfpljE2gHTegDaAhHQKb4su+yquN1fZQoaAZHQIpMG7FsHjZoB03oA2gIR0Cm+zT2exwAdX2UKGgGR0CMgxkRSP2gaAdN6ANoCEdApvyMhFEy+HV9lChoBkdAihqNknTiKmgHTegDaAhHQKcDoml67d11fZQoaAZHQIqx+NFSbYtoB03oA2gIR0CnBNyS/0uldX2UKGgGR0CKTuwPAfuDaAdN6ANoCEdApwdSWiUPhHV9lChoBkdAiaQ94eLeh2gHTegDaAhHQKcImHYYixF1fZQoaAZHQIHOmuFHrhRoB03oA2gIR0CnD2pJXhfjdX2UKGgGR0CJkFXg9/z8aAdN6ANoCEdApxClX3g1nHV9lChoBkdAi4CMtTUAk2gHTegDaAhHQKcTE/yoXKt1fZQoaAZHQIxZNTxXnyNoB03oA2gIR0CnFGk5hjOLdX2UKGgGR0CIYcFwDNhWaAdN6ANoCEdApxtCeqaPS3V9lChoBkdAiwTf9gnc+WgHTegDaAhHQKcceeU6gdx1fZQoaAZHQIrtm5jH4oJoB03oA2gIR0CnHwHs9jgAdX2UKGgGR0CIlNqUNayKaAdN6ANoCEdApyBOMju8b3V9lChoBkdAirtgxagVXWgHTegDaAhHQKcnMkv9LpR1fZQoaAZHQIgYKeK8+RpoB03oA2gIR0CnKIRDTjNqdX2UKGgGR0CKUZFqBVdYaAdN6ANoCEdApyr1dszl93V9lChoBkdAjEa3q7iAD2gHTegDaAhHQKcsNIjGDL91fZQoaAZHQIuOG1Bt1p1oB03oA2gIR0CnMvghB7eEdX2UKGgGR0CI7zjBl+VkaAdN6ANoCEdApzQywIMSb3V9lChoBkdAigMm6XjU/mgHTegDaAhHQKc2mO/+Kj11fZQoaAZHQIrDmf29L6FoB03oA2gIR0CnN/mFSKm9dX2UKGgGR0CGWr7VrhzeaAdN6ANoCEdApz8VeY2KmHV9lChoBkdAiXgg7YChe2gHTegDaAhHQKdAVy8SPEN1fZQoaAZHQIjCuJm/WUdoB03oA2gIR0CnQtRDkU9IdX2UKGgGR0CLqFTzd1uBaAdN6ANoCEdAp0QeNvOyFHV9lChoBkdAi5PJ7b+LnGgHTegDaAhHQKdK/QE6kqN1fZQoaAZHQInNBl18stloB03oA2gIR0CnTEKR2bG4dX2UKGgGR0CKv41FYuCgaAdN6ANoCEdAp07L5RCQcXV9lChoBkdAjItOTaCcw2gHTegDaAhHQKdQBq8Djip1fZQoaAZHQIyPE0HhS+BoB03oA2gIR0CnVtQqAjIJdX2UKGgGR0CLqHhQWN3oaAdN6ANoCEdAp1gPai9Iw3V9lChoBkdAi8WGiHqNZWgHTegDaAhHQKdafA8B+4N1fZQoaAZHQIvuUYqG1x9oB03oA2gIR0CnW7mwiaAndX2UKGgGR0CMU0uTzND/aAdN6ANoCEdAp2KAlt0mt3V9lChoBkdAh1O4QBgeBGgHTegDaAhHQKdjw6jFhod1fZQoaAZHQIoB8MspXp5oB03oA2gIR0CnZkoqTbFkdX2UKGgGR0CIqdc7hegMaAdN6ANoCEdAp2d/CO3lS3V9lChoBkdAiXG+7L+xW2gHTegDaAhHQKduoVyFPBV1fZQoaAZHQId+nQY1pCdoB03oA2gIR0Cnb+aUJOWTdX2UKGgGR0CNbCaef7JoaAdN6ANoCEdAp3JRJ7LMcXV9lChoBkdAjSiI3R5TqGgHTegDaAhHQKdzndcB2fV1fZQoaAZHQIrkrOTq0MRoB03oA2gIR0CnepYYR/VidX2UKGgGR0CJYwDhcZ+AaAdN6ANoCEdAp3vBsj3VTnV9lChoBkdAieH+pXIU8GgHTegDaAhHQKd+LYYixFB1fZQoaAZHQIi+ehXbM5hoB03oA2gIR0Cnf3EjgQ6IdX2UKGgGR0CJZAXzlLezaAdN6ANoCEdAp4Y1mUW2w3V9lChoBkdAiRx+2uxKQWgHTegDaAhHQKeHaxoIv8J1fZQoaAZHQIn2PfEXLvFoB03oA2gIR0CnidnPNVzZdX2UKGgGR0CMSPio86mwaAdN6ANoCEdAp4sU4Nqgy3V9lChoBkdAjFnC7K7qZGgHTegDaAhHQKeSBBPbfxd1fZQoaAZHQIoCQ4CIUJxoB03oA2gIR0Cnk07DEWIodX2UKGgGR0CHPmFGG21EaAdN6ANoCEdAp5XCfHxSYXV9lChoBkdAit+9ORDCxmgHTegDaAhHQKeXD4k/r0J1fZQoaAZHQImrREMLF4toB03oA2gIR0CnnhVy3kPudX2UKGgGR0CK0Zq0MPSVaAdN6ANoCEdAp59sxZdOZnV9lChoBkdAiij1G0/nn2gHTegDaAhHQKeh4qHXVb11fZQoaAZHQIi5h1q33HtoB03oA2gIR0Cnoyw4jrzHdX2UKGgGR0CL8wdNnGsFaAdN6ANoCEdAp6n4Qg9vCXV9lChoBkdAiVr1YZEUkGgHTegDaAhHQKerOzlcQiB1fZQoaAZHQIz/hyZKFqVoB03oA2gIR0CnraH+qBEsdX2UKGgGR0CMAkyxA0KraAdN6ANoCEdAp67qmTC+DnV9lChoBkdAhP6GGmDUVmgHTegDaAhHQKe1xAsTWXl1fZQoaAZHQI0tMadc0LtoB03oA2gIR0Cntv/vOQhfdX2UKGgGR0CMsVEofCAMaAdN6ANoCEdAp7mEyULUkXV9lChoBkdAjA5+BH09Q2gHTegDaAhHQKe6ypGWldl1fZQoaAZHQItIIcT8HfNoB03oA2gIR0CnwhNgSeyzdX2UKGgGR0CKQtRE4NqhaAdN6ANoCEdAp8OL6SDAanV9lChoBkdAithisGPgemgHTegDaAhHQKfGX8VpKz11fZQoaAZHQIx/QkqtozxoB03oA2gIR0Cnx7EaMrEtdX2UKGgGR0CMienv2GqQaAdN6ANoCEdAp86gYP5HmXV9lChoBkdAhbTEB0ZFX2gHTegDaAhHQKfP37TlT3t1fZQoaAZHQIylnP1L8JloB03oA2gIR0Cn0lPBJqZddX2UKGgGR0CL6H39JjDsaAdN6ANoCEdAp9OdqSHM2XV9lChoBkdAhrUomw7kn2gHTegDaAhHQKfaje8f3ex1fZQoaAZHQIrigrWiDdxoB03oA2gIR0Cn2+lwcYIjdX2UKGgGR0CJGTH3lCC0aAdN6ANoCEdAp95jSPU8WHV9lChoBkdAh/f9fkWAPWgHTegDaAhHQKffuY6XBxh1fZQoaAZHQIg6taKUFB9oB03oA2gIR0Cn5tPuogmrdX2UKGgGR0CKEN6Hj6vaaAdN6ANoCEdAp+gThm5DqnV9lChoBkdAiVyvf0mMO2gHTegDaAhHQKfqi7Ciypt1fZQoaAZHQIozAR9PUKBoB03oA2gIR0Cn6+Gza9K3dX2UKGgGR0CMbLLGJemfaAdN6ANoCEdAp/LlmcvugHV9lChoBkdAjVXLgn+hoWgHTegDaAhHQKf0GjbBXS11fZQoaAZHQIqHy+36Q/5oB03oA2gIR0Cn9n8kMTewdX2UKGgGR0CNV/UIcBEKaAdN6ANoCEdAp/fG4kNWl3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.10.9", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28550e6f406097d233fff0429c69e14c0269a121d3932c70ed6780990282bb6a
|
3 |
+
size 285455
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 750.6397069261468, "std_reward": 117.88421399278506, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-10T13:11:50.021893"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88f24f3625c006397cb1fc85e94318e52248b6e77b598232a13f47c6ebb5decb
|
3 |
+
size 2136
|