Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +20 -18
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.52 +/- 0.33
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8fa2b2e0b8e410fc5c06b95a7089be2518a19d3e91ca78857770405b819c6cd
|
3 |
+
size 109599
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,14 +4,16 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -46,19 +48,19 @@
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2hhaWRlci9taW5jb25kYTMvdWJ1bnR1L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvaGFpZGVyL21pbmNvbmRhMy91YnVudHUvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,29 +68,29 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[ 0.
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
-
"use_sde":
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
-
"n_steps":
|
88 |
"gamma": 0.99,
|
89 |
-
"gae_lambda":
|
90 |
"ent_coef": 0.0,
|
91 |
-
"vf_coef": 0.
|
92 |
"max_grad_norm": 0.5,
|
93 |
"normalize_advantage": false
|
94 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb1120e37f0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb1120e5740>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1685837841248425512,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2hhaWRlci9taW5jb25kYTMvdWJ1bnR1L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvaGFpZGVyL21pbmNvbmRhMy91YnVudHUvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANTncPoE74zs11Qw/NTncPoE74zs11Qw/NTncPoE74zs11Qw/NTncPoE74zs11Qw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQNY9PyTEqz4eFac/uREVvnpZRb90GI4+jAfnvj8VzL/rhuq9Z9qsv2VfkD8sB9W/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA1Odw+gTvjOzXVDD+X9jY9Y0qrOlBDhTw1Odw+gTvjOzXVDD+X9jY9Y0qrOlBDhTw1Odw+gTvjOzXVDD+X9jY9Y0qrOlBDhTw1Odw+gTvjOzXVDD+X9jY9Y0qrOlBDhTyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[0.43012396 0.00693458 0.5501283 ]\n [0.43012396 0.00693458 0.5501283 ]\n [0.43012396 0.00693458 0.5501283 ]\n [0.43012396 0.00693458 0.5501283 ]]",
|
62 |
+
"desired_goal": "[[ 0.74155045 0.3354808 1.305332 ]\n [-0.14557542 -0.77089655 0.2775303 ]\n [-0.45122945 -1.5943984 -0.11451515]\n [-1.3504151 1.1279112 -1.6642814 ]]",
|
63 |
+
"observation": "[[0.43012396 0.00693458 0.5501283 0.04466876 0.00130684 0.01626745]\n [0.43012396 0.00693458 0.5501283 0.04466876 0.00130684 0.01626745]\n [0.43012396 0.00693458 0.5501283 0.04466876 0.00130684 0.01626745]\n [0.43012396 0.00693458 0.5501283 0.04466876 0.00130684 0.01626745]]"
|
64 |
},
|
65 |
"_last_episode_starts": {
|
66 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
68 |
},
|
69 |
"_last_original_obs": {
|
70 |
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAA/elPXS+wT084OM9Qa69vFW/l7yX2Uw+9j7xvEfnqD3sfxY+1iCOu/j/Bj1A4Is+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[ 0.08103754 0.09460154 0.11126754]\n [-0.02315438 -0.01852385 0.20004879]\n [-0.02944897 0.08247238 0.14697236]\n [-0.00433741 0.03295895 0.27319527]]",
|
74 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
},
|
76 |
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
"sde_sample_freq": -1,
|
79 |
"_current_progress_remaining": 0.0,
|
80 |
"ep_info_buffer": {
|
81 |
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOKJ71jVa7r+UhpRSlIwBbJRLMowBdJRHQNFHWAHVwxZ1fZQoaAZoCWgPQwgbRkHw+Pb5v5SGlFKUaBVLMmgWR0DRR1ENNJvpdX2UKGgGaAloD0MI+x711yus9r+UhpRSlGgVSzJoFkdA0UdKcJdB0XV9lChoBmgJaA9DCLCvdakReua/lIaUUpRoFUsyaBZHQNFHQ6W5Yo11fZQoaAZoCWgPQwgbhSSzesf0v5SGlFKUaBVLMmgWR0DRR28oZydXdX2UKGgGaAloD0MI+YVXkjxX6L+UhpRSlGgVSzJoFkdA0UdoMpw0f3V9lChoBmgJaA9DCP8G7dXHw+K/lIaUUpRoFUsyaBZHQNFHYZbdJrd1fZQoaAZoCWgPQwhLHeT1YBL/v5SGlFKUaBVLMmgWR0DRR1rN1QqJdX2UKGgGaAloD0MI740hADj28L+UhpRSlGgVSzJoFkdA0UeGF7Uoa3V9lChoBmgJaA9DCPNWXYdqyum/lIaUUpRoFUsyaBZHQNFHfyDIzWR1fZQoaAZoCWgPQwh/FHXmHhL0v5SGlFKUaBVLMmgWR0DRR3iF36hydX2UKGgGaAloD0MIr2Ab8WT3/L+UhpRSlGgVSzJoFkdA0UdxvLX+VHV9lChoBmgJaA9DCBptVRLZh/S/lIaUUpRoFUsyaBZHQNFHnrLU1AJ1fZQoaAZoCWgPQwhSuYlamtvlv5SGlFKUaBVLMmgWR0DRR5fCHh0hdX2UKGgGaAloD0MIVmMJa2Ns/b+UhpRSlGgVSzJoFkdA0UeRKIznBHV9lChoBmgJaA9DCAPRkzKpof6/lIaUUpRoFUsyaBZHQNFHinZPEbZ1fZQoaAZoCWgPQwhGtvP91Lj4v5SGlFKUaBVLMmgWR0DRR7XAi3XqdX2UKGgGaAloD0MIGD4ipkRS8r+UhpRSlGgVSzJoFkdA0UeuysCDEnV9lChoBmgJaA9DCDyInSl0HvK/lIaUUpRoFUsyaBZHQNFHqC+tbLV1fZQoaAZoCWgPQwg8EcR5OIH7v5SGlFKUaBVLMmgWR0DRR6Fmukk9dX2UKGgGaAloD0MI+S8QBMhQ6r+UhpRSlGgVSzJoFkdA0UfM3Ov+wXV9lChoBmgJaA9DCIgq/BnerOu/lIaUUpRoFUsyaBZHQNFHxegL7XR1fZQoaAZoCWgPQwjOxd/2BAnuv5SGlFKUaBVLMmgWR0DRR79Mcp9adX2UKGgGaAloD0MIieyDLAum9b+UhpRSlGgVSzJoFkdA0Ue4hGpdbHV9lChoBmgJaA9DCM7ixcIQOea/lIaUUpRoFUsyaBZHQNFH49N34bl1fZQoaAZoCWgPQwiFeY8zTdjqv5SGlFKUaBVLMmgWR0DRR9zeGfwrdX2UKGgGaAloD0MICd/7G7SX+L+UhpRSlGgVSzJoFkdA0UfWQHAymHV9lChoBmgJaA9DCA5o6Qq20fq/lIaUUpRoFUsyaBZHQNFHz3g1m8N1fZQoaAZoCWgPQwg5miMrv0zyv5SGlFKUaBVLMmgWR0DRR/qLUCq7dX2UKGgGaAloD0MIF/Ayw0ZZ4b+UhpRSlGgVSzJoFkdA0Ufzlf7aZnV9lChoBmgJaA9DCP4pVaLsreW/lIaUUpRoFUsyaBZHQNFH7PthNM51fZQoaAZoCWgPQwgnEeFfBI31v5SGlFKUaBVLMmgWR0DRR+YzO5avdX2UKGgGaAloD0MISZwVURP97L+UhpRSlGgVSzJoFkdA0UgRfqX4TXV9lChoBmgJaA9DCONSlba4Rua/lIaUUpRoFUsyaBZHQNFICoi5d4V1fZQoaAZoCWgPQwhzgjY5fFLwv5SGlFKUaBVLMmgWR0DRSAPtgKF7dX2UKGgGaAloD0MIT3l0Iyyq8L+UhpRSlGgVSzJoFkdA0Uf9IuoP1HV9lChoBmgJaA9DCKA2qtOBbPW/lIaUUpRoFUsyaBZHQNFIKUSmIj51fZQoaAZoCWgPQwhsBOJ1/YLtv5SGlFKUaBVLMmgWR0DRSCJRm9QGdX2UKGgGaAloD0MIMGKfAIoR6b+UhpRSlGgVSzJoFkdA0Ugbthd+onV9lChoBmgJaA9DCMtneR7cHeW/lIaUUpRoFUsyaBZHQNFIFO9OARV1fZQoaAZoCWgPQwjvkc1V8xz7v5SGlFKUaBVLMmgWR0DRSD+1UlzEdX2UKGgGaAloD0MIEYyDS8fc+7+UhpRSlGgVSzJoFkdA0Ug4wDeTFHV9lChoBmgJaA9DCKAVGLK61ei/lIaUUpRoFUsyaBZHQNFIMiFoL5R1fZQoaAZoCWgPQwgktybdlsjxv5SGlFKUaBVLMmgWR0DRSCtVQyh0dX2UKGgGaAloD0MIWFhwP+DB8b+UhpRSlGgVSzJoFkdA0UhWaLGaQXV9lChoBmgJaA9DCDYEx2XcFAPAlIaUUpRoFUsyaBZHQNFIT3Lmp2l1fZQoaAZoCWgPQwgzqaENwEb6v5SGlFKUaBVLMmgWR0DRSEjX7LuAdX2UKGgGaAloD0MImgewyK/f8b+UhpRSlGgVSzJoFkdA0UhCD7qIJ3V9lChoBmgJaA9DCDRJLCl3H/C/lIaUUpRoFUsyaBZHQNFIbbP+n651fZQoaAZoCWgPQwhe8dQjDe7zv5SGlFKUaBVLMmgWR0DRSGa9TP0JdX2UKGgGaAloD0MIaDwRxHn4/r+UhpRSlGgVSzJoFkdA0UhgIg/1QXV9lChoBmgJaA9DCAn7dhIRfv6/lIaUUpRoFUsyaBZHQNFIWVt4zJp1fZQoaAZoCWgPQwiefeVBegrxv5SGlFKUaBVLMmgWR0DRSITv/io9dX2UKGgGaAloD0MIN6YnLPEA5r+UhpRSlGgVSzJoFkdA0Uh9+N96TnV9lChoBmgJaA9DCMprJXSXBPO/lIaUUpRoFUsyaBZHQNFId13Qla91fZQoaAZoCWgPQwjp19ZP/5n5v5SGlFKUaBVLMmgWR0DRSHCVt4zKdX2UKGgGaAloD0MIIZT3cTTH+r+UhpRSlGgVSzJoFkdA0UibWNm16XV9lChoBmgJaA9DCPKXFvVJLvW/lIaUUpRoFUsyaBZHQNFIlGG7Bft1fZQoaAZoCWgPQwhcd/NUh9wDwJSGlFKUaBVLMmgWR0DRSI3BguyvdX2UKGgGaAloD0MIrB4wD5my8r+UhpRSlGgVSzJoFkdA0UiG98qnWXV9lChoBmgJaA9DCFkYIqevpwXAlIaUUpRoFUsyaBZHQNFItL56+nJ1fZQoaAZoCWgPQwjvxoLCoMzpv5SGlFKUaBVLMmgWR0DRSK3J0W/KdX2UKGgGaAloD0MIsfhNYaUC9r+UhpRSlGgVSzJoFkdA0UinLvkRz3V9lChoBmgJaA9DCFUyAFRxIwLAlIaUUpRoFUsyaBZHQNFIoGPDHfd1fZQoaAZoCWgPQwhRMGMK1vj2v5SGlFKUaBVLMmgWR0DRSMsF/x2CdX2UKGgGaAloD0MItK7RcqAH8b+UhpRSlGgVSzJoFkdA0UjEEHdGiHV9lChoBmgJaA9DCFFoWfePBfW/lIaUUpRoFUsyaBZHQNFIvXSa3JB1fZQoaAZoCWgPQwizQLtDioHyv5SGlFKUaBVLMmgWR0DRSLap5u63dX2UKGgGaAloD0MIU+xoHOq39b+UhpRSlGgVSzJoFkdA0UjhmUW2w3V9lChoBmgJaA9DCIvDmV/NAQDAlIaUUpRoFUsyaBZHQNFI2qQvHtF1fZQoaAZoCWgPQwjcEOM1r2rzv5SGlFKUaBVLMmgWR0DRSNQETxoadX2UKGgGaAloD0MI4zYawFug+L+UhpRSlGgVSzJoFkdA0UjNPEKmbnV9lChoBmgJaA9DCNSAQdKn1fO/lIaUUpRoFUsyaBZHQNFI964MF2V1fZQoaAZoCWgPQwieCU0SSwr6v5SGlFKUaBVLMmgWR0DRSPCzlcQidX2UKGgGaAloD0MIsK4K1GIwAsCUhpRSlGgVSzJoFkdA0UjqF36hx3V9lChoBmgJaA9DCNQs0O6Qova/lIaUUpRoFUsyaBZHQNFI40ypJf91fZQoaAZoCWgPQwh+qZ83FSn1v5SGlFKUaBVLMmgWR0DRSQ3RplBhdX2UKGgGaAloD0MI4xjJHqFm6L+UhpRSlGgVSzJoFkdA0UkG2ugYg3V9lChoBmgJaA9DCLK+gcmNIva/lIaUUpRoFUsyaBZHQNFJAD5GjKx1fZQoaAZoCWgPQwjVWwNbJRj2v5SGlFKUaBVLMmgWR0DRSPlz/6wddX2UKGgGaAloD0MI1ejVAKWh/L+UhpRSlGgVSzJoFkdA0UkkXoC+13V9lChoBmgJaA9DCHrjpDDvMfS/lIaUUpRoFUsyaBZHQNFJHWldkax1fZQoaAZoCWgPQwhw6ZjzjP3pv5SGlFKUaBVLMmgWR0DRSRbNSqEOdX2UKGgGaAloD0MIh6bs9IM6/b+UhpRSlGgVSzJoFkdA0UkQA7gbZXV9lChoBmgJaA9DCC5yT1d3TAPAlIaUUpRoFUsyaBZHQNFJPQVoHs11fZQoaAZoCWgPQwiSyhRzEJQDwJSGlFKUaBVLMmgWR0DRSTYQEpy7dX2UKGgGaAloD0MIk+UklL5QBMCUhpRSlGgVSzJoFkdA0Ukvf779AHV9lChoBmgJaA9DCHhBRGraBfy/lIaUUpRoFUsyaBZHQNFJKLThHb11fZQoaAZoCWgPQwiOzvkpjkP1v5SGlFKUaBVLMmgWR0DRSVRhJAdGdX2UKGgGaAloD0MI27+y0qQU+b+UhpRSlGgVSzJoFkdA0UlNbLEDQ3V9lChoBmgJaA9DCHkFoidlUvC/lIaUUpRoFUsyaBZHQNFJRtLYf4h1fZQoaAZoCWgPQwiT/l4KD3oAwJSGlFKUaBVLMmgWR0DRSUAMLF4tdX2UKGgGaAloD0MI8bkT7L/O8L+UhpRSlGgVSzJoFkdA0UlrAPd2xXV9lChoBmgJaA9DCEzHnGfsS/q/lIaUUpRoFUsyaBZHQNFJZApnYg91fZQoaAZoCWgPQwgO2xZlNgj4v5SGlFKUaBVLMmgWR0DRSV1uFYdRdX2UKGgGaAloD0MIqrncYKgD+7+UhpRSlGgVSzJoFkdA0UlWpaA4GXV9lChoBmgJaA9DCEfmkT8YeOy/lIaUUpRoFUsyaBZHQNFJgc+JP691fZQoaAZoCWgPQwhHBU62gfv4v5SGlFKUaBVLMmgWR0DRSXrZFocrdX2UKGgGaAloD0MIVUyln3C297+UhpRSlGgVSzJoFkdA0Ul0O5avBHV9lChoBmgJaA9DCKq6RzZXzfy/lIaUUpRoFUsyaBZHQNFJbXG4qgB1ZS4="
|
83 |
},
|
84 |
"ep_success_buffer": {
|
85 |
":type:": "<class 'collections.deque'>",
|
86 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
},
|
88 |
+
"_n_updates": 312500,
|
89 |
+
"n_steps": 8,
|
90 |
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
"max_grad_norm": 0.5,
|
95 |
"normalize_advantage": false
|
96 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cbd62eadebe7b019721d1c792a1d88447d158352b137bcbfc50133b703d9d0b
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc1f836bc85ee989cdff27b011e6b1f56054be06badb1106fdeef5b4b945c921
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9a37def7f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9a37df1c40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 10000000, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685759399231711327, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2hhaWRlci9taW5jb25kYTMvdWJ1bnR1L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvaGFpZGVyL21pbmNvbmRhMy91YnVudHUvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATUyUPvaT+r3dd8g+TUyUPvaT+r3dd8g+TUyUPvaT+r3dd8g+TUyUPvaT+r3dd8g+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4ERgvmP6JT+AU7Y+j1uaPrxpJj8qd3i/LtD2vmWiI79e+tg/fgubv/eNST/4kLc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABNTJQ+9pP6vd13yD7Pj308U72qvMl5mDxNTJQ+9pP6vd13yD7Pj308U72qvMl5mDxNTJQ+9pP6vd13yD7Pj308U72qvMl5mDxNTJQ+9pP6vd13yD7Pj308U72qvMl5mDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.28964463 -0.12235253 0.39153948]\n [ 0.28964463 -0.12235253 0.39153948]\n [ 0.28964463 -0.12235253 0.39153948]\n [ 0.28964463 -0.12235253 0.39153948]]", "desired_goal": "[[-0.21901274 0.64835185 0.3561058 ]\n [ 0.3014798 0.6500509 -0.9705683 ]\n [-0.48205703 -0.6391967 1.6951406 ]\n [-1.2112882 0.78732246 1.4341116 ]]", "observation": "[[ 0.28964463 -0.12235253 0.39153948 0.01547618 -0.02084223 0.01861276]\n [ 0.28964463 -0.12235253 0.39153948 0.01547618 -0.02084223 0.01861276]\n [ 0.28964463 -0.12235253 0.39153948 0.01547618 -0.02084223 0.01861276]\n [ 0.28964463 -0.12235253 0.39153948 0.01547618 -0.02084223 0.01861276]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvIcZPIigcr35TUw95TuuvfbrRL2Z8k4+SWWdPScO9T0ZGpc+upQ+PaMI8DnuBpE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00937074 -0.05923513 0.04987905]\n [-0.08507518 -0.04807659 0.20209731]\n [ 0.07685334 0.1196559 0.29512098]\n [ 0.04652856 0.00045783 0.283256 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIknTN5Jv9E8CUhpRSlIwBbJRLMowBdJRHQNbd+vQWvbJ1fZQoaAZoCWgPQwgm5e5zfOQdwJSGlFKUaBVLMmgWR0DW3fC6cy31dX2UKGgGaAloD0MIgq59Ab2QEMCUhpRSlGgVSzJoFkdA1t3ohKlHjXV9lChoBmgJaA9DCMWQnEzcChPAlIaUUpRoFUsyaBZHQNbd4NlZowp1fZQoaAZoCWgPQwju68A5I4odwJSGlFKUaBVLMmgWR0DW3hmjxkNGdX2UKGgGaAloD0MINrBVgsVRFcCUhpRSlGgVSzJoFkdA1t4Pb6P8ynV9lChoBmgJaA9DCEt319mQjxjAlIaUUpRoFUsyaBZHQNbeBzPWxyJ1fZQoaAZoCWgPQwi+UMB2MBIawJSGlFKUaBVLMmgWR0DW3f+PZIxydX2UKGgGaAloD0MIB5eOOc9IH8CUhpRSlGgVSzJoFkdA1t42/sE7n3V9lChoBmgJaA9DCG9nX3mQvgbAlIaUUpRoFUsyaBZHQNbeLMqJ/G51fZQoaAZoCWgPQwh/bf30n8UcwJSGlFKUaBVLMmgWR0DW3iSVHFxXdX2UKGgGaAloD0MIaxDmdi9XIcCUhpRSlGgVSzJoFkdA1t4c4zabnXV9lChoBmgJaA9DCHcrS3SWaRTAlIaUUpRoFUsyaBZHQNbeVBCpm291fZQoaAZoCWgPQwiXrmAb8YQgwJSGlFKUaBVLMmgWR0DW3kniIciodX2UKGgGaAloD0MIBB2takm3EsCUhpRSlGgVSzJoFkdA1t5BpFkQPXV9lChoBmgJaA9DCKvrUE1JPijAlIaUUpRoFUsyaBZHQNbeOfVmSQp1fZQoaAZoCWgPQwioqWVrfRkxwJSGlFKUaBVLMmgWR0DW3nJrGipOdX2UKGgGaAloD0MIF/NzQ1O2FMCUhpRSlGgVSzJoFkdA1t5oNzr/sHV9lChoBmgJaA9DCIBEEyhiwSHAlIaUUpRoFUsyaBZHQNbeYAAU+LZ1fZQoaAZoCWgPQwjQ8jy4O5shwJSGlFKUaBVLMmgWR0DW3lhM/QjVdX2UKGgGaAloD0MIPj4hO2/7IMCUhpRSlGgVSzJoFkdA1t6SN4Z/C3V9lChoBmgJaA9DCHUDBd7J7yHAlIaUUpRoFUsyaBZHQNbeiAU1yeZ1fZQoaAZoCWgPQwgCf/j572EcwJSGlFKUaBVLMmgWR0DW3n/Q0GeMdX2UKGgGaAloD0MIfv0QGyy8GMCUhpRSlGgVSzJoFkdA1t54JSR8t3V9lChoBmgJaA9DCOp6ouvCzyPAlIaUUpRoFUsyaBZHQNberm7J4jd1fZQoaAZoCWgPQwikNnFyv7MiwJSGlFKUaBVLMmgWR0DW3qQ8kleGdX2UKGgGaAloD0MIQS0GD9MuEsCUhpRSlGgVSzJoFkdA1t6cBHTZx3V9lChoBmgJaA9DCIf7yK1JxxrAlIaUUpRoFUsyaBZHQNbelFie/Yd1fZQoaAZoCWgPQwgh5pKq7fYWwJSGlFKUaBVLMmgWR0DW3s5yZKFqdX2UKGgGaAloD0MIOgSOBBqsFMCUhpRSlGgVSzJoFkdA1t7EQXQ+lnV9lChoBmgJaA9DCLPQzmkWfDDAlIaUUpRoFUsyaBZHQNbevAuqWC51fZQoaAZoCWgPQwgKL8GpD9QrwJSGlFKUaBVLMmgWR0DW3rRdmg8KdX2UKGgGaAloD0MIChNGs7IdHsCUhpRSlGgVSzJoFkdA1t7q4e9zwXV9lChoBmgJaA9DCCDsFKsGaSLAlIaUUpRoFUsyaBZHQNbe4Kpo9LZ1fZQoaAZoCWgPQwi6gm3Ekz0UwJSGlFKUaBVLMmgWR0DW3thsenyedX2UKGgGaAloD0MIn1c89UgbL8CUhpRSlGgVSzJoFkdA1t7QwEhaDHV9lChoBmgJaA9DCNJT5BBx8ybAlIaUUpRoFUsyaBZHQNbfBflU6xR1fZQoaAZoCWgPQwhMjdDP1DsbwJSGlFKUaBVLMmgWR0DW3vu/etSydX2UKGgGaAloD0MIgH9KlShLGMCUhpRSlGgVSzJoFkdA1t7zicG1QnV9lChoBmgJaA9DCPW8GwsKoy/AlIaUUpRoFUsyaBZHQNbe69gjQiR1fZQoaAZoCWgPQwjAXfbrTlcgwJSGlFKUaBVLMmgWR0DW3yPWI42kdX2UKGgGaAloD0MIuw9AahNHGcCUhpRSlGgVSzJoFkdA1t8Zm3OObXV9lChoBmgJaA9DCAvRIXAkuCPAlIaUUpRoFUsyaBZHQNbfEV6Rhc91fZQoaAZoCWgPQwipaKz9nc0OwJSGlFKUaBVLMmgWR0DW3wmyC4BndX2UKGgGaAloD0MIWmWmtP7GJcCUhpRSlGgVSzJoFkdA1t9BDB/I83V9lChoBmgJaA9DCAtgysABPRHAlIaUUpRoFUsyaBZHQNbfNtHc1wZ1fZQoaAZoCWgPQwhXI7vSMnIgwJSGlFKUaBVLMmgWR0DW3y6TwDvFdX2UKGgGaAloD0MI+7K0U3NpIcCUhpRSlGgVSzJoFkdA1t8m5vLowHV9lChoBmgJaA9DCKtZZ3xfDCnAlIaUUpRoFUsyaBZHQNbfXcwQDmt1fZQoaAZoCWgPQwgrE36pn1cOwJSGlFKUaBVLMmgWR0DW31OYTj//dX2UKGgGaAloD0MID5pd91acKcCUhpRSlGgVSzJoFkdA1t9LXJo0ynV9lChoBmgJaA9DCK9d2nBYGiPAlIaUUpRoFUsyaBZHQNbfQ68xsVN1fZQoaAZoCWgPQwgf2zLgLJUlwJSGlFKUaBVLMmgWR0DW331iH6/JdX2UKGgGaAloD0MI+aHSiJkNJMCUhpRSlGgVSzJoFkdA1t9zLZBcA3V9lChoBmgJaA9DCD3UtmEUdBzAlIaUUpRoFUsyaBZHQNbfavd/J/51fZQoaAZoCWgPQwiC5QgZyJMewJSGlFKUaBVLMmgWR0DW32NNJvpAdX2UKGgGaAloD0MIgVoMHqbNGsCUhpRSlGgVSzJoFkdA1t+ZjzI3i3V9lChoBmgJaA9DCAMGSZ9WIRTAlIaUUpRoFUsyaBZHQNbfj1TvRZ51fZQoaAZoCWgPQwiHM7+aA8QnwJSGlFKUaBVLMmgWR0DW34cdV/+bdX2UKGgGaAloD0MIl5APejaLIsCUhpRSlGgVSzJoFkdA1t9/adtl7XV9lChoBmgJaA9DCJQWLquwMSHAlIaUUpRoFUsyaBZHQNbftzG96C11fZQoaAZoCWgPQwjue9Rfr1gmwJSGlFKUaBVLMmgWR0DW36z5DZ13dX2UKGgGaAloD0MItCJqos/nH8CUhpRSlGgVSzJoFkdA1t+kxCIDYHV9lChoBmgJaA9DCEXzABb5xSHAlIaUUpRoFUsyaBZHQNbfnRIz3yt1fZQoaAZoCWgPQwiqnsw/+oYmwJSGlFKUaBVLMmgWR0DW39StZFG5dX2UKGgGaAloD0MIMEllijnIHMCUhpRSlGgVSzJoFkdA1t/Kc0tRN3V9lChoBmgJaA9DCKc+kLxzwCXAlIaUUpRoFUsyaBZHQNbfwj/ACXB1fZQoaAZoCWgPQwgy5Nh6hvAVwJSGlFKUaBVLMmgWR0DW37qT6i0wdX2UKGgGaAloD0MIwO0JEtt9HMCUhpRSlGgVSzJoFkdA1t/yIFNcnnV9lChoBmgJaA9DCFpiZTTy6RbAlIaUUpRoFUsyaBZHQNbf5/AXVLB1fZQoaAZoCWgPQwgllpS7z/kowJSGlFKUaBVLMmgWR0DW39+z8gp0dX2UKGgGaAloD0MIrP4Iw4AlI8CUhpRSlGgVSzJoFkdA1t/YAUcn3XV9lChoBmgJaA9DCLsmpDUG9SHAlIaUUpRoFUsyaBZHQNbgEMW43FV1fZQoaAZoCWgPQwgzMshdhCkcwJSGlFKUaBVLMmgWR0DW4AaTQmeEdX2UKGgGaAloD0MIjlvMzw0VKMCUhpRSlGgVSzJoFkdA1t/+WUbDM3V9lChoBmgJaA9DCBqmttRBfhLAlIaUUpRoFUsyaBZHQNbf9q28Zk11fZQoaAZoCWgPQwju7CsP0tMbwJSGlFKUaBVLMmgWR0DW4C3yWiUQdX2UKGgGaAloD0MIuRYtQNsaLsCUhpRSlGgVSzJoFkdA1uAjvBJqZnV9lChoBmgJaA9DCJwaaD7n3h3AlIaUUpRoFUsyaBZHQNbgG4X40uV1fZQoaAZoCWgPQwh646Qw79kgwJSGlFKUaBVLMmgWR0DW4BPTG5tndX2UKGgGaAloD0MIWcAEbt2FJ8CUhpRSlGgVSzJoFkdA1uBM5HEuQXV9lChoBmgJaA9DCEfp0r8kJRzAlIaUUpRoFUsyaBZHQNbgQqptJnR1fZQoaAZoCWgPQwivQspPqm0hwJSGlFKUaBVLMmgWR0DW4DpztCzDdX2UKGgGaAloD0MIznFuE+41IMCUhpRSlGgVSzJoFkdA1uAyv6j323V9lChoBmgJaA9DCAg7xapBmBzAlIaUUpRoFUsyaBZHQNbgbHH3lCF1fZQoaAZoCWgPQwjVsrW+SLAiwJSGlFKUaBVLMmgWR0DW4GI+5e7ddX2UKGgGaAloD0MIEY5Z9iSAIcCUhpRSlGgVSzJoFkdA1uBaCIDYAnV9lChoBmgJaA9DCDF8REyJZBXAlIaUUpRoFUsyaBZHQNbgUlvybx51fZQoaAZoCWgPQwitiQW+olsQwJSGlFKUaBVLMmgWR0DW4ItRoAXEdX2UKGgGaAloD0MIh22LMhtkKcCUhpRSlGgVSzJoFkdA1uCBHBk7OnV9lChoBmgJaA9DCBhEpKZdvBjAlIaUUpRoFUsyaBZHQNbgeOctoSN1fZQoaAZoCWgPQwipFabvNZQbwJSGlFKUaBVLMmgWR0DW4HE70WdmdX2UKGgGaAloD0MIpgwc0NI1E8CUhpRSlGgVSzJoFkdA1uCozmfXgHV9lChoBmgJaA9DCONrzywJcCnAlIaUUpRoFUsyaBZHQNbgnpccENh1fZQoaAZoCWgPQwgiMxe4POYWwJSGlFKUaBVLMmgWR0DW4JZhpg1FdX2UKGgGaAloD0MIlPYGX5i0IMCUhpRSlGgVSzJoFkdA1uCOsFt8/nV9lChoBmgJaA9DCIYCtoMRuyHAlIaUUpRoFUsyaBZHQNbgxkSM98t1fZQoaAZoCWgPQwjBH37+e5AXwJSGlFKUaBVLMmgWR0DW4LwSxqwhdX2UKGgGaAloD0MI6EoEqn9gHcCUhpRSlGgVSzJoFkdA1uCz1qFh5XV9lChoBmgJaA9DCNZUFoVd0DDAlIaUUpRoFUsyaBZHQNbgrCjk+5h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 500000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.10.9", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb1120e37f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb1120e5740>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 10000000, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685837841248425512, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2hhaWRlci9taW5jb25kYTMvdWJ1bnR1L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvaGFpZGVyL21pbmNvbmRhMy91YnVudHUvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANTncPoE74zs11Qw/NTncPoE74zs11Qw/NTncPoE74zs11Qw/NTncPoE74zs11Qw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQNY9PyTEqz4eFac/uREVvnpZRb90GI4+jAfnvj8VzL/rhuq9Z9qsv2VfkD8sB9W/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA1Odw+gTvjOzXVDD+X9jY9Y0qrOlBDhTw1Odw+gTvjOzXVDD+X9jY9Y0qrOlBDhTw1Odw+gTvjOzXVDD+X9jY9Y0qrOlBDhTw1Odw+gTvjOzXVDD+X9jY9Y0qrOlBDhTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43012396 0.00693458 0.5501283 ]\n [0.43012396 0.00693458 0.5501283 ]\n [0.43012396 0.00693458 0.5501283 ]\n [0.43012396 0.00693458 0.5501283 ]]", "desired_goal": "[[ 0.74155045 0.3354808 1.305332 ]\n [-0.14557542 -0.77089655 0.2775303 ]\n [-0.45122945 -1.5943984 -0.11451515]\n [-1.3504151 1.1279112 -1.6642814 ]]", "observation": "[[0.43012396 0.00693458 0.5501283 0.04466876 0.00130684 0.01626745]\n [0.43012396 0.00693458 0.5501283 0.04466876 0.00130684 0.01626745]\n [0.43012396 0.00693458 0.5501283 0.04466876 0.00130684 0.01626745]\n [0.43012396 0.00693458 0.5501283 0.04466876 0.00130684 0.01626745]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAA/elPXS+wT084OM9Qa69vFW/l7yX2Uw+9j7xvEfnqD3sfxY+1iCOu/j/Bj1A4Is+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08103754 0.09460154 0.11126754]\n [-0.02315438 -0.01852385 0.20004879]\n [-0.02944897 0.08247238 0.14697236]\n [-0.00433741 0.03295895 0.27319527]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOKJ71jVa7r+UhpRSlIwBbJRLMowBdJRHQNFHWAHVwxZ1fZQoaAZoCWgPQwgbRkHw+Pb5v5SGlFKUaBVLMmgWR0DRR1ENNJvpdX2UKGgGaAloD0MI+x711yus9r+UhpRSlGgVSzJoFkdA0UdKcJdB0XV9lChoBmgJaA9DCLCvdakReua/lIaUUpRoFUsyaBZHQNFHQ6W5Yo11fZQoaAZoCWgPQwgbhSSzesf0v5SGlFKUaBVLMmgWR0DRR28oZydXdX2UKGgGaAloD0MI+YVXkjxX6L+UhpRSlGgVSzJoFkdA0UdoMpw0f3V9lChoBmgJaA9DCP8G7dXHw+K/lIaUUpRoFUsyaBZHQNFHYZbdJrd1fZQoaAZoCWgPQwhLHeT1YBL/v5SGlFKUaBVLMmgWR0DRR1rN1QqJdX2UKGgGaAloD0MI740hADj28L+UhpRSlGgVSzJoFkdA0UeGF7Uoa3V9lChoBmgJaA9DCPNWXYdqyum/lIaUUpRoFUsyaBZHQNFHfyDIzWR1fZQoaAZoCWgPQwh/FHXmHhL0v5SGlFKUaBVLMmgWR0DRR3iF36hydX2UKGgGaAloD0MIr2Ab8WT3/L+UhpRSlGgVSzJoFkdA0UdxvLX+VHV9lChoBmgJaA9DCBptVRLZh/S/lIaUUpRoFUsyaBZHQNFHnrLU1AJ1fZQoaAZoCWgPQwhSuYlamtvlv5SGlFKUaBVLMmgWR0DRR5fCHh0hdX2UKGgGaAloD0MIVmMJa2Ns/b+UhpRSlGgVSzJoFkdA0UeRKIznBHV9lChoBmgJaA9DCAPRkzKpof6/lIaUUpRoFUsyaBZHQNFHinZPEbZ1fZQoaAZoCWgPQwhGtvP91Lj4v5SGlFKUaBVLMmgWR0DRR7XAi3XqdX2UKGgGaAloD0MIGD4ipkRS8r+UhpRSlGgVSzJoFkdA0UeuysCDEnV9lChoBmgJaA9DCDyInSl0HvK/lIaUUpRoFUsyaBZHQNFHqC+tbLV1fZQoaAZoCWgPQwg8EcR5OIH7v5SGlFKUaBVLMmgWR0DRR6Fmukk9dX2UKGgGaAloD0MI+S8QBMhQ6r+UhpRSlGgVSzJoFkdA0UfM3Ov+wXV9lChoBmgJaA9DCIgq/BnerOu/lIaUUpRoFUsyaBZHQNFHxegL7XR1fZQoaAZoCWgPQwjOxd/2BAnuv5SGlFKUaBVLMmgWR0DRR79Mcp9adX2UKGgGaAloD0MIieyDLAum9b+UhpRSlGgVSzJoFkdA0Ue4hGpdbHV9lChoBmgJaA9DCM7ixcIQOea/lIaUUpRoFUsyaBZHQNFH49N34bl1fZQoaAZoCWgPQwiFeY8zTdjqv5SGlFKUaBVLMmgWR0DRR9zeGfwrdX2UKGgGaAloD0MICd/7G7SX+L+UhpRSlGgVSzJoFkdA0UfWQHAymHV9lChoBmgJaA9DCA5o6Qq20fq/lIaUUpRoFUsyaBZHQNFHz3g1m8N1fZQoaAZoCWgPQwg5miMrv0zyv5SGlFKUaBVLMmgWR0DRR/qLUCq7dX2UKGgGaAloD0MIF/Ayw0ZZ4b+UhpRSlGgVSzJoFkdA0Ufzlf7aZnV9lChoBmgJaA9DCP4pVaLsreW/lIaUUpRoFUsyaBZHQNFH7PthNM51fZQoaAZoCWgPQwgnEeFfBI31v5SGlFKUaBVLMmgWR0DRR+YzO5avdX2UKGgGaAloD0MISZwVURP97L+UhpRSlGgVSzJoFkdA0UgRfqX4TXV9lChoBmgJaA9DCONSlba4Rua/lIaUUpRoFUsyaBZHQNFICoi5d4V1fZQoaAZoCWgPQwhzgjY5fFLwv5SGlFKUaBVLMmgWR0DRSAPtgKF7dX2UKGgGaAloD0MIT3l0Iyyq8L+UhpRSlGgVSzJoFkdA0Uf9IuoP1HV9lChoBmgJaA9DCKA2qtOBbPW/lIaUUpRoFUsyaBZHQNFIKUSmIj51fZQoaAZoCWgPQwhsBOJ1/YLtv5SGlFKUaBVLMmgWR0DRSCJRm9QGdX2UKGgGaAloD0MIMGKfAIoR6b+UhpRSlGgVSzJoFkdA0Ugbthd+onV9lChoBmgJaA9DCMtneR7cHeW/lIaUUpRoFUsyaBZHQNFIFO9OARV1fZQoaAZoCWgPQwjvkc1V8xz7v5SGlFKUaBVLMmgWR0DRSD+1UlzEdX2UKGgGaAloD0MIEYyDS8fc+7+UhpRSlGgVSzJoFkdA0Ug4wDeTFHV9lChoBmgJaA9DCKAVGLK61ei/lIaUUpRoFUsyaBZHQNFIMiFoL5R1fZQoaAZoCWgPQwgktybdlsjxv5SGlFKUaBVLMmgWR0DRSCtVQyh0dX2UKGgGaAloD0MIWFhwP+DB8b+UhpRSlGgVSzJoFkdA0UhWaLGaQXV9lChoBmgJaA9DCDYEx2XcFAPAlIaUUpRoFUsyaBZHQNFIT3Lmp2l1fZQoaAZoCWgPQwgzqaENwEb6v5SGlFKUaBVLMmgWR0DRSEjX7LuAdX2UKGgGaAloD0MImgewyK/f8b+UhpRSlGgVSzJoFkdA0UhCD7qIJ3V9lChoBmgJaA9DCDRJLCl3H/C/lIaUUpRoFUsyaBZHQNFIbbP+n651fZQoaAZoCWgPQwhe8dQjDe7zv5SGlFKUaBVLMmgWR0DRSGa9TP0JdX2UKGgGaAloD0MIaDwRxHn4/r+UhpRSlGgVSzJoFkdA0UhgIg/1QXV9lChoBmgJaA9DCAn7dhIRfv6/lIaUUpRoFUsyaBZHQNFIWVt4zJp1fZQoaAZoCWgPQwiefeVBegrxv5SGlFKUaBVLMmgWR0DRSITv/io9dX2UKGgGaAloD0MIN6YnLPEA5r+UhpRSlGgVSzJoFkdA0Uh9+N96TnV9lChoBmgJaA9DCMprJXSXBPO/lIaUUpRoFUsyaBZHQNFId13Qla91fZQoaAZoCWgPQwjp19ZP/5n5v5SGlFKUaBVLMmgWR0DRSHCVt4zKdX2UKGgGaAloD0MIIZT3cTTH+r+UhpRSlGgVSzJoFkdA0UibWNm16XV9lChoBmgJaA9DCPKXFvVJLvW/lIaUUpRoFUsyaBZHQNFIlGG7Bft1fZQoaAZoCWgPQwhcd/NUh9wDwJSGlFKUaBVLMmgWR0DRSI3BguyvdX2UKGgGaAloD0MIrB4wD5my8r+UhpRSlGgVSzJoFkdA0UiG98qnWXV9lChoBmgJaA9DCFkYIqevpwXAlIaUUpRoFUsyaBZHQNFItL56+nJ1fZQoaAZoCWgPQwjvxoLCoMzpv5SGlFKUaBVLMmgWR0DRSK3J0W/KdX2UKGgGaAloD0MIsfhNYaUC9r+UhpRSlGgVSzJoFkdA0UinLvkRz3V9lChoBmgJaA9DCFUyAFRxIwLAlIaUUpRoFUsyaBZHQNFIoGPDHfd1fZQoaAZoCWgPQwhRMGMK1vj2v5SGlFKUaBVLMmgWR0DRSMsF/x2CdX2UKGgGaAloD0MItK7RcqAH8b+UhpRSlGgVSzJoFkdA0UjEEHdGiHV9lChoBmgJaA9DCFFoWfePBfW/lIaUUpRoFUsyaBZHQNFIvXSa3JB1fZQoaAZoCWgPQwizQLtDioHyv5SGlFKUaBVLMmgWR0DRSLap5u63dX2UKGgGaAloD0MIU+xoHOq39b+UhpRSlGgVSzJoFkdA0UjhmUW2w3V9lChoBmgJaA9DCIvDmV/NAQDAlIaUUpRoFUsyaBZHQNFI2qQvHtF1fZQoaAZoCWgPQwjcEOM1r2rzv5SGlFKUaBVLMmgWR0DRSNQETxoadX2UKGgGaAloD0MI4zYawFug+L+UhpRSlGgVSzJoFkdA0UjNPEKmbnV9lChoBmgJaA9DCNSAQdKn1fO/lIaUUpRoFUsyaBZHQNFI964MF2V1fZQoaAZoCWgPQwieCU0SSwr6v5SGlFKUaBVLMmgWR0DRSPCzlcQidX2UKGgGaAloD0MIsK4K1GIwAsCUhpRSlGgVSzJoFkdA0UjqF36hx3V9lChoBmgJaA9DCNQs0O6Qova/lIaUUpRoFUsyaBZHQNFI40ypJf91fZQoaAZoCWgPQwh+qZ83FSn1v5SGlFKUaBVLMmgWR0DRSQ3RplBhdX2UKGgGaAloD0MI4xjJHqFm6L+UhpRSlGgVSzJoFkdA0UkG2ugYg3V9lChoBmgJaA9DCLK+gcmNIva/lIaUUpRoFUsyaBZHQNFJAD5GjKx1fZQoaAZoCWgPQwjVWwNbJRj2v5SGlFKUaBVLMmgWR0DRSPlz/6wddX2UKGgGaAloD0MI1ejVAKWh/L+UhpRSlGgVSzJoFkdA0UkkXoC+13V9lChoBmgJaA9DCHrjpDDvMfS/lIaUUpRoFUsyaBZHQNFJHWldkax1fZQoaAZoCWgPQwhw6ZjzjP3pv5SGlFKUaBVLMmgWR0DRSRbNSqEOdX2UKGgGaAloD0MIh6bs9IM6/b+UhpRSlGgVSzJoFkdA0UkQA7gbZXV9lChoBmgJaA9DCC5yT1d3TAPAlIaUUpRoFUsyaBZHQNFJPQVoHs11fZQoaAZoCWgPQwiSyhRzEJQDwJSGlFKUaBVLMmgWR0DRSTYQEpy7dX2UKGgGaAloD0MIk+UklL5QBMCUhpRSlGgVSzJoFkdA0Ukvf779AHV9lChoBmgJaA9DCHhBRGraBfy/lIaUUpRoFUsyaBZHQNFJKLThHb11fZQoaAZoCWgPQwiOzvkpjkP1v5SGlFKUaBVLMmgWR0DRSVRhJAdGdX2UKGgGaAloD0MI27+y0qQU+b+UhpRSlGgVSzJoFkdA0UlNbLEDQ3V9lChoBmgJaA9DCHkFoidlUvC/lIaUUpRoFUsyaBZHQNFJRtLYf4h1fZQoaAZoCWgPQwiT/l4KD3oAwJSGlFKUaBVLMmgWR0DRSUAMLF4tdX2UKGgGaAloD0MI8bkT7L/O8L+UhpRSlGgVSzJoFkdA0UlrAPd2xXV9lChoBmgJaA9DCEzHnGfsS/q/lIaUUpRoFUsyaBZHQNFJZApnYg91fZQoaAZoCWgPQwgO2xZlNgj4v5SGlFKUaBVLMmgWR0DRSV1uFYdRdX2UKGgGaAloD0MIqrncYKgD+7+UhpRSlGgVSzJoFkdA0UlWpaA4GXV9lChoBmgJaA9DCEfmkT8YeOy/lIaUUpRoFUsyaBZHQNFJgc+JP691fZQoaAZoCWgPQwhHBU62gfv4v5SGlFKUaBVLMmgWR0DRSXrZFocrdX2UKGgGaAloD0MIVUyln3C297+UhpRSlGgVSzJoFkdA0Ul0O5avBHV9lChoBmgJaA9DCKq6RzZXzfy/lIaUUpRoFUsyaBZHQNFJbXG4qgB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 312500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.10.9", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.518104192451574, "std_reward": 0.3307694798900394, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-04T17:29:43.299802"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3117
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef2322f60a215a75a4babe90958c77fecb0dce0732051bbb365e7d5bd6d6cf1b
|
3 |
size 3117
|