Haleshot commited on
Commit
5cc46ef
·
verified ·
1 Parent(s): f0e725b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Haleshot/Mathmate-7B-DELLA-ORPO
3
+ tags:
4
+ - finetuned
5
+ - orpo
6
+ - everyday-conversations
7
+ datasets:
8
+ - HuggingFaceTB/everyday-conversations-llama3.1-2k
9
+ license: apache-2.0
10
+ language:
11
+ - en
12
+ library_name: transformers
13
+ pipeline_tag: text-generation
14
+ ---
15
+
16
+ # Mathmate-7B-DELLA-ORPO-D
17
+
18
+ Mathmate-7B-DELLA-ORPO-D is a finetuned version of [Haleshot/Mathmate-7B-DELLA-ORPO](https://huggingface.co/Haleshot/Mathmate-7B-DELLA-ORPO) using the ORPO method, combined with a LoRA adapter trained on everyday conversations.
19
+
20
+ ## Model Details
21
+
22
+ - **Base Model:** [Haleshot/Mathmate-7B-DELLA-ORPO](https://huggingface.co/Haleshot/Mathmate-7B-DELLA-ORPO)
23
+ - **Training Dataset:** [HuggingFaceTB/everyday-conversations-llama3.1-2k](https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k)
24
+
25
+ ## Dataset
26
+
27
+ The model incorporates training on the [HuggingFaceTB/everyday-conversations-llama3.1-2k](https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k) dataset, which focuses on everyday conversations and small talk.
28
+
29
+ ## Usage
30
+
31
+ Here's an example of how to use the model:
32
+
33
+ ```python
34
+ from transformers import AutoTokenizer, AutoModelForCausalLM
35
+ import torch
36
+
37
+ model_name = "Haleshot/Mathmate-7B-DELLA-ORPO-ORPO-D"
38
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
39
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
40
+
41
+ def generate_response(prompt, max_length=512):
42
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
43
+ outputs = model.generate(**inputs, max_length=max_length, num_return_sequences=1, do_sample=True, temperature=0.7)
44
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
45
+
46
+ prompt = "Let's have a casual conversation about weekend plans."
47
+ response = generate_response(prompt)
48
+ print(response)
49
+ ```
50
+
51
+ ## Acknowledgements
52
+
53
+ Thanks to the HuggingFaceTB team for providing the everyday conversations dataset used in this finetuning process.