HamzaFarhan commited on
Commit
83b4844
1 Parent(s): 58a2926

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 253.03 +/- 22.81
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9df4d56280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9df4d56310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9df4d563a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9df4d56430>", "_build": "<function ActorCriticPolicy._build at 0x7f9df4d564c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9df4d56550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9df4d565e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9df4d56670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9df4d56700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9df4d56790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9df4d56820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9df4d4cf30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672274876817645660, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECkmL32cCm6Ta4YO7rgsTWIVe46qzeqNAAAgD8AAIA/s9PhvVKLJz6O+0k+PYR2vovxMzx2a2W7AAAAAAAAAACGvz0+pUpYP5q8FD6+aN2+omtjPtqjtr0AAAAAAAAAAAbqDj5GpJI/QsLwPrQ8+r6obXU+U3p4PgAAAAAAAAAA2rD7ParZej/9eXs+hK/ovkYlYj4B2MC8AAAAAAAAAABmlcw89qw7ukbRhzYT9BYx7SpqOFsBorUAAIA/AACAP6Yfr709clM64MzQPNQ55Ds1ew479ZQLvQAAAAAAAAAAgMQgvtEu/T1U/5g9PNUevg4PFr3CWv+8AAAAAAAAAADakfY9Iu68Pj+5mr6PZHe+Rs8bvR73yL0AAAAAAAAAADPzlDnhWKS6tI5KOY+EOzRz8Ae6Hf9ouAAAgD8AAIA/feW5PsXojj9qv8M+xdL4vk7h+D6dtMk9AAAAAAAAAADN1Nw7TUVnPmYObT3ipIi+LtQdPSL0Db0AAAAAAAAAAEAhhj08qTM9usEBvjM1E742uKI8uWo1uwAAAAAAAAAAmuAjva59orqNC8yyFeryLnX/n7qj5FwzAACAPwAAgD/N+Yu99xI/PsW1Vj0c1Fq+lwTevKNQFL0AAAAAAAAAACY4sz06Dug+rSv1vZOKpL5fW8Q7iZUVvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRuo9lVMMcECUhpRSlIwBbJRNPgGMAXSUR0CSpJiMHbAUdX2UKGgGaAloD0MIqtVXV0WzckCUhpRSlGgVTTABaBZHQJKlF+TeO4p1fZQoaAZoCWgPQwhv2LYos15vQJSGlFKUaBVNIwFoFkdAkqVXk92X9nV9lChoBmgJaA9DCHjvqDGhY3JAlIaUUpRoFU2GAWgWR0CSpiS2phnbdX2UKGgGaAloD0MIKhprf2e+bkCUhpRSlGgVTTwBaBZHQJKmOMju8bt1fZQoaAZoCWgPQwjkEkceCFdvQJSGlFKUaBVNCgFoFkdAkqccURFqjHV9lChoBmgJaA9DCP6bFyd+8HBAlIaUUpRoFU1mAWgWR0CSqfUg0TDgdX2UKGgGaAloD0MIZr0Yyol/cUCUhpRSlGgVTUgBaBZHQJKqG1twaR91fZQoaAZoCWgPQwg7xD9s6aVxQJSGlFKUaBVNNAFoFkdAkqsffTCtR3V9lChoBmgJaA9DCHsS2JxDmnBAlIaUUpRoFU06AWgWR0CSq2gq3EyddX2UKGgGaAloD0MI4gFlU258cECUhpRSlGgVTSIBaBZHQJKrt/5Lytp1fZQoaAZoCWgPQwj9aaM6nXVvQJSGlFKUaBVNJQFoFkdAkqvQxFiKBXV9lChoBmgJaA9DCP3ZjxTRR3BAlIaUUpRoFU0GAWgWR0CSrIx0uDjBdX2UKGgGaAloD0MIr3lVZ7XZb0CUhpRSlGgVTUsBaBZHQJKs6YsunMt1fZQoaAZoCWgPQwjj4NIxZ0RtQJSGlFKUaBVNDQFoFkdAkq7tSydFv3V9lChoBmgJaA9DCFX5npEIxnFAlIaUUpRoFU1UAWgWR0CSr6neizsydX2UKGgGaAloD0MIVWggls32ckCUhpRSlGgVTUYBaBZHQJKv+z4UN8V1fZQoaAZoCWgPQwj27o/3qptxQJSGlFKUaBVNMgFoFkdAkrA0K3NLUXV9lChoBmgJaA9DCOrNqPkqInBAlIaUUpRoFU0CAWgWR0CSsnhsqJ/HdX2UKGgGaAloD0MIqOFbWPdSc0CUhpRSlGgVS/FoFkdAkrLuvMbFTHV9lChoBmgJaA9DCDlDcccbpXNAlIaUUpRoFU11AWgWR0CSs5OH31zydX2UKGgGaAloD0MIknTN5JvHckCUhpRSlGgVTb4BaBZHQJKzxnSOR1Z1fZQoaAZoCWgPQwg2k2+2+XlxQJSGlFKUaBVNQgFoFkdAkrap2ECeVnV9lChoBmgJaA9DCIaRXtTu8nFAlIaUUpRoFU1YAWgWR0CStw5PuXu3dX2UKGgGaAloD0MImGw82GLXcUCUhpRSlGgVTTYBaBZHQJK3IvGp++d1fZQoaAZoCWgPQwj7y+7JwwNwQJSGlFKUaBVNVwFoFkdAkrdbUXpGF3V9lChoBmgJaA9DCN8zEqERLnJAlIaUUpRoFU1aAWgWR0CSuM/i5uqFdX2UKGgGaAloD0MImboruyCGcECUhpRSlGgVTa0BaBZHQJK42fpUxVR1fZQoaAZoCWgPQwjxoURLHtVxQJSGlFKUaBVNGgFoFkdAkrmRddE9dXV9lChoBmgJaA9DCGFVvfzOym9AlIaUUpRoFU01AWgWR0CSubyZrpJPdX2UKGgGaAloD0MIpbxWQreGcECUhpRSlGgVTRwBaBZHQJK6MzLwF1V1fZQoaAZoCWgPQwjU8gNXeSRuQJSGlFKUaBVNLAFoFkdAkrp+8wpOOHV9lChoBmgJaA9DCPq5oSk73nJAlIaUUpRoFU0NAWgWR0CSu748U21ldX2UKGgGaAloD0MIXf3YJL82bUCUhpRSlGgVTRcBaBZHQJK9Dq1PWQR1fZQoaAZoCWgPQwgsRfKVQKpvQJSGlFKUaBVNJgFoFkdAkr3BsImgJ3V9lChoBmgJaA9DCGKFWz6SrmJAlIaUUpRoFU3oA2gWR0CSvoXBguyvdX2UKGgGaAloD0MIrJDyk2pUcUCUhpRSlGgVS/doFkdAkr7R3FDOT3V9lChoBmgJaA9DCKzj+KHSRV5AlIaUUpRoFU3oA2gWR0CSvyEtuk1udX2UKGgGaAloD0MILUKxFfRFcECUhpRSlGgVTRwBaBZHQJLAU6xPfsN1fZQoaAZoCWgPQwhxAz4/jC5wQJSGlFKUaBVNIQFoFkdAksBsbvPTonV9lChoBmgJaA9DCB4X1SIiVXJAlIaUUpRoFUv0aBZHQJLAk1+AmRh1fZQoaAZoCWgPQwgCfo0kwQVxQJSGlFKUaBVNmQFoFkdAksC0NBnjAHV9lChoBmgJaA9DCPwXCALkinBAlIaUUpRoFUv7aBZHQJLBV+mWMS91fZQoaAZoCWgPQwhwRPes63pxQJSGlFKUaBVNFAFoFkdAksIwxzq8lHV9lChoBmgJaA9DCLTpCOBmbXJAlIaUUpRoFU07AWgWR0CSwo3Kji4sdX2UKGgGaAloD0MIwHXFjDARc0CUhpRSlGgVTTEBaBZHQJLDbVpblil1fZQoaAZoCWgPQwgHfH4YYZhwQJSGlFKUaBVNCQFoFkdAksPJCfHxSnV9lChoBmgJaA9DCE1Iawy6sW5AlIaUUpRoFU2wAWgWR0CSxKBoEjgRdX2UKGgGaAloD0MIDf/pBooVcUCUhpRSlGgVTWUBaBZHQJLYEfHPu5V1fZQoaAZoCWgPQwiPwvUo3C9xQJSGlFKUaBVNaAFoFkdAktsuh4+r2nV9lChoBmgJaA9DCGFSfHxCIk9AlIaUUpRoFUv9aBZHQJLbXxiG34N1fZQoaAZoCWgPQwjD8XwGVMNtQJSGlFKUaBVNRgFoFkdAktt9wiqyW3V9lChoBmgJaA9DCDvj++JS1XBAlIaUUpRoFU0TAWgWR0CS27+x4Y78dX2UKGgGaAloD0MIzosTX+1YcUCUhpRSlGgVTVUBaBZHQJLcXj2i+L51fZQoaAZoCWgPQwh16PS8G3luQJSGlFKUaBVNIQFoFkdAktyIEB8x9HV9lChoBmgJaA9DCEZ6Ubsf8nFAlIaUUpRoFU2ZAWgWR0CS3Zz3h4t6dX2UKGgGaAloD0MIQfD49m5EcECUhpRSlGgVTRkBaBZHQJLePCvX9R91fZQoaAZoCWgPQwiUoL/QI/RvQJSGlFKUaBVNOQFoFkdAkt5NlqagEnV9lChoBmgJaA9DCJKXNbGABnNAlIaUUpRoFU0hAWgWR0CS3uR8+iaidX2UKGgGaAloD0MIUBvV6cCqb0CUhpRSlGgVTW8BaBZHQJLe6zJIUah1fZQoaAZoCWgPQwgCRpc3h/hxQJSGlFKUaBVNvwFoFkdAkt/xS1mapnV9lChoBmgJaA9DCNnNjH508HBAlIaUUpRoFU0wAWgWR0CS4Hnb7CSBdX2UKGgGaAloD0MIaD18mai9bUCUhpRSlGgVTRgBaBZHQJLhFAPd2xJ1fZQoaAZoCWgPQwieBgySfn5yQJSGlFKUaBVL92gWR0CS4qAood+5dX2UKGgGaAloD0MIMZV+whnqcECUhpRSlGgVTWIBaBZHQJLiqUD+zdF1fZQoaAZoCWgPQwiP+1brRP9xQJSGlFKUaBVNowFoFkdAkuNTTa0x/XV9lChoBmgJaA9DCN3QlJ1+onBAlIaUUpRoFU0xAWgWR0CS5YWUKRdQdX2UKGgGaAloD0MIs5WX/A8AcECUhpRSlGgVTU8BaBZHQJLlocxTKkl1fZQoaAZoCWgPQwjdBrXf2gBxQJSGlFKUaBVNSgFoFkdAkuXJ17pmmXV9lChoBmgJaA9DCFGDaRg++XBAlIaUUpRoFU1RAWgWR0CS5cryDqW1dX2UKGgGaAloD0MISpuqe+R6bkCUhpRSlGgVTTkBaBZHQJLl8o1DSgJ1fZQoaAZoCWgPQwgX1o13R9BwQJSGlFKUaBVNIAFoFkdAkubCFPBSDXV9lChoBmgJaA9DCEEMdO2LUHFAlIaUUpRoFU0lAWgWR0CS5tev6j33dX2UKGgGaAloD0MIZYuk3ej+bUCUhpRSlGgVTR0BaBZHQJLnLpUxVQ11fZQoaAZoCWgPQwg8S5ARkD1zQJSGlFKUaBVNLAFoFkdAkueVolD4QHV9lChoBmgJaA9DCDRMbakD5XBAlIaUUpRoFU0oAWgWR0CS6Gr4nF5wdX2UKGgGaAloD0MIsaVHU33ucECUhpRSlGgVTXkBaBZHQJLofbYbsGB1fZQoaAZoCWgPQwiQ9dTqq6tEQJSGlFKUaBVL42gWR0CS6S5ZbILgdX2UKGgGaAloD0MI7zzxnG2xcECUhpRSlGgVTR4BaBZHQJLpRRBNVR11fZQoaAZoCWgPQwjY8PRK2fJwQJSGlFKUaBVNWAFoFkdAkuoRysCDEnV9lChoBmgJaA9DCOSByCINxHFAlIaUUpRoFU0SAWgWR0CS6lMK1G9YdX2UKGgGaAloD0MIG9XpQNZbNkCUhpRSlGgVS9ZoFkdAkus+JcgQpXV9lChoBmgJaA9DCDo7GRwl4HFAlIaUUpRoFU05AWgWR0CS6+m7rcCYdX2UKGgGaAloD0MIliGOdXGycUCUhpRSlGgVTQoBaBZHQJLshKUVzp51fZQoaAZoCWgPQwjMJsCwfBhxQJSGlFKUaBVNKQFoFkdAku1Ljo6jnHV9lChoBmgJaA9DCFxV9l2R+29AlIaUUpRoFU0eAWgWR0CS7Vg88s+WdX2UKGgGaAloD0MI9n8O8+VHcECUhpRSlGgVTQcBaBZHQJLt4C1Z1V51fZQoaAZoCWgPQwjaxwp+W0hwQJSGlFKUaBVNSQFoFkdAku5TakAPu3V9lChoBmgJaA9DCE+sU+W7dHNAlIaUUpRoFU0JAWgWR0CS71KmsNlRdX2UKGgGaAloD0MIByP2CSDjcUCUhpRSlGgVTVABaBZHQJLvfjZL7Gh1fZQoaAZoCWgPQwi7Cik/KVJyQJSGlFKUaBVNFAFoFkdAkvCMVQAMlXV9lChoBmgJaA9DCGdjJebZuHFAlIaUUpRoFU0RAWgWR0CS8JHmA9V4dX2UKGgGaAloD0MIzQLtDumXcECUhpRSlGgVTUwBaBZHQJLxaKoAGSp1fZQoaAZoCWgPQwhsBrgg2xdxQJSGlFKUaBVNcQFoFkdAkvFpJwsGxHV9lChoBmgJaA9DCNOkFHT7p3FAlIaUUpRoFUv/aBZHQJLyc7o0Q9R1fZQoaAZoCWgPQwgExvoGJqVyQJSGlFKUaBVNsQFoFkdAkvJ6B3A2ynV9lChoBmgJaA9DCDQSoRHsrW9AlIaUUpRoFU0PAWgWR0CS9E43FUADdX2UKGgGaAloD0MI44v2eCHYcECUhpRSlGgVS/FoFkdAkvRNuLrHEXV9lChoBmgJaA9DCDuMSX9vuXJAlIaUUpRoFU0BAWgWR0CS9Lv+wTufdX2UKGgGaAloD0MIaR1VTVDhcUCUhpRSlGgVTX8BaBZHQJL1KKrJbMZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:054912f3d26ddc7f399fb9dc4007d6f125f639dafa513e67580df2a1845e1936
3
+ size 147206
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9df4d56280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9df4d56310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9df4d563a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9df4d56430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9df4d564c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9df4d56550>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9df4d565e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9df4d56670>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9df4d56700>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9df4d56790>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9df4d56820>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9df4d4cf30>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672274876817645660,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECkmL32cCm6Ta4YO7rgsTWIVe46qzeqNAAAgD8AAIA/s9PhvVKLJz6O+0k+PYR2vovxMzx2a2W7AAAAAAAAAACGvz0+pUpYP5q8FD6+aN2+omtjPtqjtr0AAAAAAAAAAAbqDj5GpJI/QsLwPrQ8+r6obXU+U3p4PgAAAAAAAAAA2rD7ParZej/9eXs+hK/ovkYlYj4B2MC8AAAAAAAAAABmlcw89qw7ukbRhzYT9BYx7SpqOFsBorUAAIA/AACAP6Yfr709clM64MzQPNQ55Ds1ew479ZQLvQAAAAAAAAAAgMQgvtEu/T1U/5g9PNUevg4PFr3CWv+8AAAAAAAAAADakfY9Iu68Pj+5mr6PZHe+Rs8bvR73yL0AAAAAAAAAADPzlDnhWKS6tI5KOY+EOzRz8Ae6Hf9ouAAAgD8AAIA/feW5PsXojj9qv8M+xdL4vk7h+D6dtMk9AAAAAAAAAADN1Nw7TUVnPmYObT3ipIi+LtQdPSL0Db0AAAAAAAAAAEAhhj08qTM9usEBvjM1E742uKI8uWo1uwAAAAAAAAAAmuAjva59orqNC8yyFeryLnX/n7qj5FwzAACAPwAAgD/N+Yu99xI/PsW1Vj0c1Fq+lwTevKNQFL0AAAAAAAAAACY4sz06Dug+rSv1vZOKpL5fW8Q7iZUVvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRuo9lVMMcECUhpRSlIwBbJRNPgGMAXSUR0CSpJiMHbAUdX2UKGgGaAloD0MIqtVXV0WzckCUhpRSlGgVTTABaBZHQJKlF+TeO4p1fZQoaAZoCWgPQwhv2LYos15vQJSGlFKUaBVNIwFoFkdAkqVXk92X9nV9lChoBmgJaA9DCHjvqDGhY3JAlIaUUpRoFU2GAWgWR0CSpiS2phnbdX2UKGgGaAloD0MIKhprf2e+bkCUhpRSlGgVTTwBaBZHQJKmOMju8bt1fZQoaAZoCWgPQwjkEkceCFdvQJSGlFKUaBVNCgFoFkdAkqccURFqjHV9lChoBmgJaA9DCP6bFyd+8HBAlIaUUpRoFU1mAWgWR0CSqfUg0TDgdX2UKGgGaAloD0MIZr0Yyol/cUCUhpRSlGgVTUgBaBZHQJKqG1twaR91fZQoaAZoCWgPQwg7xD9s6aVxQJSGlFKUaBVNNAFoFkdAkqsffTCtR3V9lChoBmgJaA9DCHsS2JxDmnBAlIaUUpRoFU06AWgWR0CSq2gq3EyddX2UKGgGaAloD0MI4gFlU258cECUhpRSlGgVTSIBaBZHQJKrt/5Lytp1fZQoaAZoCWgPQwj9aaM6nXVvQJSGlFKUaBVNJQFoFkdAkqvQxFiKBXV9lChoBmgJaA9DCP3ZjxTRR3BAlIaUUpRoFU0GAWgWR0CSrIx0uDjBdX2UKGgGaAloD0MIr3lVZ7XZb0CUhpRSlGgVTUsBaBZHQJKs6YsunMt1fZQoaAZoCWgPQwjj4NIxZ0RtQJSGlFKUaBVNDQFoFkdAkq7tSydFv3V9lChoBmgJaA9DCFX5npEIxnFAlIaUUpRoFU1UAWgWR0CSr6neizsydX2UKGgGaAloD0MIVWggls32ckCUhpRSlGgVTUYBaBZHQJKv+z4UN8V1fZQoaAZoCWgPQwj27o/3qptxQJSGlFKUaBVNMgFoFkdAkrA0K3NLUXV9lChoBmgJaA9DCOrNqPkqInBAlIaUUpRoFU0CAWgWR0CSsnhsqJ/HdX2UKGgGaAloD0MIqOFbWPdSc0CUhpRSlGgVS/FoFkdAkrLuvMbFTHV9lChoBmgJaA9DCDlDcccbpXNAlIaUUpRoFU11AWgWR0CSs5OH31zydX2UKGgGaAloD0MIknTN5JvHckCUhpRSlGgVTb4BaBZHQJKzxnSOR1Z1fZQoaAZoCWgPQwg2k2+2+XlxQJSGlFKUaBVNQgFoFkdAkrap2ECeVnV9lChoBmgJaA9DCIaRXtTu8nFAlIaUUpRoFU1YAWgWR0CStw5PuXu3dX2UKGgGaAloD0MImGw82GLXcUCUhpRSlGgVTTYBaBZHQJK3IvGp++d1fZQoaAZoCWgPQwj7y+7JwwNwQJSGlFKUaBVNVwFoFkdAkrdbUXpGF3V9lChoBmgJaA9DCN8zEqERLnJAlIaUUpRoFU1aAWgWR0CSuM/i5uqFdX2UKGgGaAloD0MImboruyCGcECUhpRSlGgVTa0BaBZHQJK42fpUxVR1fZQoaAZoCWgPQwjxoURLHtVxQJSGlFKUaBVNGgFoFkdAkrmRddE9dXV9lChoBmgJaA9DCGFVvfzOym9AlIaUUpRoFU01AWgWR0CSubyZrpJPdX2UKGgGaAloD0MIpbxWQreGcECUhpRSlGgVTRwBaBZHQJK6MzLwF1V1fZQoaAZoCWgPQwjU8gNXeSRuQJSGlFKUaBVNLAFoFkdAkrp+8wpOOHV9lChoBmgJaA9DCPq5oSk73nJAlIaUUpRoFU0NAWgWR0CSu748U21ldX2UKGgGaAloD0MIXf3YJL82bUCUhpRSlGgVTRcBaBZHQJK9Dq1PWQR1fZQoaAZoCWgPQwgsRfKVQKpvQJSGlFKUaBVNJgFoFkdAkr3BsImgJ3V9lChoBmgJaA9DCGKFWz6SrmJAlIaUUpRoFU3oA2gWR0CSvoXBguyvdX2UKGgGaAloD0MIrJDyk2pUcUCUhpRSlGgVS/doFkdAkr7R3FDOT3V9lChoBmgJaA9DCKzj+KHSRV5AlIaUUpRoFU3oA2gWR0CSvyEtuk1udX2UKGgGaAloD0MILUKxFfRFcECUhpRSlGgVTRwBaBZHQJLAU6xPfsN1fZQoaAZoCWgPQwhxAz4/jC5wQJSGlFKUaBVNIQFoFkdAksBsbvPTonV9lChoBmgJaA9DCB4X1SIiVXJAlIaUUpRoFUv0aBZHQJLAk1+AmRh1fZQoaAZoCWgPQwgCfo0kwQVxQJSGlFKUaBVNmQFoFkdAksC0NBnjAHV9lChoBmgJaA9DCPwXCALkinBAlIaUUpRoFUv7aBZHQJLBV+mWMS91fZQoaAZoCWgPQwhwRPes63pxQJSGlFKUaBVNFAFoFkdAksIwxzq8lHV9lChoBmgJaA9DCLTpCOBmbXJAlIaUUpRoFU07AWgWR0CSwo3Kji4sdX2UKGgGaAloD0MIwHXFjDARc0CUhpRSlGgVTTEBaBZHQJLDbVpblil1fZQoaAZoCWgPQwgHfH4YYZhwQJSGlFKUaBVNCQFoFkdAksPJCfHxSnV9lChoBmgJaA9DCE1Iawy6sW5AlIaUUpRoFU2wAWgWR0CSxKBoEjgRdX2UKGgGaAloD0MIDf/pBooVcUCUhpRSlGgVTWUBaBZHQJLYEfHPu5V1fZQoaAZoCWgPQwiPwvUo3C9xQJSGlFKUaBVNaAFoFkdAktsuh4+r2nV9lChoBmgJaA9DCGFSfHxCIk9AlIaUUpRoFUv9aBZHQJLbXxiG34N1fZQoaAZoCWgPQwjD8XwGVMNtQJSGlFKUaBVNRgFoFkdAktt9wiqyW3V9lChoBmgJaA9DCDvj++JS1XBAlIaUUpRoFU0TAWgWR0CS27+x4Y78dX2UKGgGaAloD0MIzosTX+1YcUCUhpRSlGgVTVUBaBZHQJLcXj2i+L51fZQoaAZoCWgPQwh16PS8G3luQJSGlFKUaBVNIQFoFkdAktyIEB8x9HV9lChoBmgJaA9DCEZ6Ubsf8nFAlIaUUpRoFU2ZAWgWR0CS3Zz3h4t6dX2UKGgGaAloD0MIQfD49m5EcECUhpRSlGgVTRkBaBZHQJLePCvX9R91fZQoaAZoCWgPQwiUoL/QI/RvQJSGlFKUaBVNOQFoFkdAkt5NlqagEnV9lChoBmgJaA9DCJKXNbGABnNAlIaUUpRoFU0hAWgWR0CS3uR8+iaidX2UKGgGaAloD0MIUBvV6cCqb0CUhpRSlGgVTW8BaBZHQJLe6zJIUah1fZQoaAZoCWgPQwgCRpc3h/hxQJSGlFKUaBVNvwFoFkdAkt/xS1mapnV9lChoBmgJaA9DCNnNjH508HBAlIaUUpRoFU0wAWgWR0CS4Hnb7CSBdX2UKGgGaAloD0MIaD18mai9bUCUhpRSlGgVTRgBaBZHQJLhFAPd2xJ1fZQoaAZoCWgPQwieBgySfn5yQJSGlFKUaBVL92gWR0CS4qAood+5dX2UKGgGaAloD0MIMZV+whnqcECUhpRSlGgVTWIBaBZHQJLiqUD+zdF1fZQoaAZoCWgPQwiP+1brRP9xQJSGlFKUaBVNowFoFkdAkuNTTa0x/XV9lChoBmgJaA9DCN3QlJ1+onBAlIaUUpRoFU0xAWgWR0CS5YWUKRdQdX2UKGgGaAloD0MIs5WX/A8AcECUhpRSlGgVTU8BaBZHQJLlocxTKkl1fZQoaAZoCWgPQwjdBrXf2gBxQJSGlFKUaBVNSgFoFkdAkuXJ17pmmXV9lChoBmgJaA9DCFGDaRg++XBAlIaUUpRoFU1RAWgWR0CS5cryDqW1dX2UKGgGaAloD0MISpuqe+R6bkCUhpRSlGgVTTkBaBZHQJLl8o1DSgJ1fZQoaAZoCWgPQwgX1o13R9BwQJSGlFKUaBVNIAFoFkdAkubCFPBSDXV9lChoBmgJaA9DCEEMdO2LUHFAlIaUUpRoFU0lAWgWR0CS5tev6j33dX2UKGgGaAloD0MIZYuk3ej+bUCUhpRSlGgVTR0BaBZHQJLnLpUxVQ11fZQoaAZoCWgPQwg8S5ARkD1zQJSGlFKUaBVNLAFoFkdAkueVolD4QHV9lChoBmgJaA9DCDRMbakD5XBAlIaUUpRoFU0oAWgWR0CS6Gr4nF5wdX2UKGgGaAloD0MIsaVHU33ucECUhpRSlGgVTXkBaBZHQJLofbYbsGB1fZQoaAZoCWgPQwiQ9dTqq6tEQJSGlFKUaBVL42gWR0CS6S5ZbILgdX2UKGgGaAloD0MI7zzxnG2xcECUhpRSlGgVTR4BaBZHQJLpRRBNVR11fZQoaAZoCWgPQwjY8PRK2fJwQJSGlFKUaBVNWAFoFkdAkuoRysCDEnV9lChoBmgJaA9DCOSByCINxHFAlIaUUpRoFU0SAWgWR0CS6lMK1G9YdX2UKGgGaAloD0MIG9XpQNZbNkCUhpRSlGgVS9ZoFkdAkus+JcgQpXV9lChoBmgJaA9DCDo7GRwl4HFAlIaUUpRoFU05AWgWR0CS6+m7rcCYdX2UKGgGaAloD0MIliGOdXGycUCUhpRSlGgVTQoBaBZHQJLshKUVzp51fZQoaAZoCWgPQwjMJsCwfBhxQJSGlFKUaBVNKQFoFkdAku1Ljo6jnHV9lChoBmgJaA9DCFxV9l2R+29AlIaUUpRoFU0eAWgWR0CS7Vg88s+WdX2UKGgGaAloD0MI9n8O8+VHcECUhpRSlGgVTQcBaBZHQJLt4C1Z1V51fZQoaAZoCWgPQwjaxwp+W0hwQJSGlFKUaBVNSQFoFkdAku5TakAPu3V9lChoBmgJaA9DCE+sU+W7dHNAlIaUUpRoFU0JAWgWR0CS71KmsNlRdX2UKGgGaAloD0MIByP2CSDjcUCUhpRSlGgVTVABaBZHQJLvfjZL7Gh1fZQoaAZoCWgPQwi7Cik/KVJyQJSGlFKUaBVNFAFoFkdAkvCMVQAMlXV9lChoBmgJaA9DCGdjJebZuHFAlIaUUpRoFU0RAWgWR0CS8JHmA9V4dX2UKGgGaAloD0MIzQLtDumXcECUhpRSlGgVTUwBaBZHQJLxaKoAGSp1fZQoaAZoCWgPQwhsBrgg2xdxQJSGlFKUaBVNcQFoFkdAkvFpJwsGxHV9lChoBmgJaA9DCNOkFHT7p3FAlIaUUpRoFUv/aBZHQJLyc7o0Q9R1fZQoaAZoCWgPQwgExvoGJqVyQJSGlFKUaBVNsQFoFkdAkvJ6B3A2ynV9lChoBmgJaA9DCDQSoRHsrW9AlIaUUpRoFU0PAWgWR0CS9E43FUADdX2UKGgGaAloD0MI44v2eCHYcECUhpRSlGgVS/FoFkdAkvRNuLrHEXV9lChoBmgJaA9DCDuMSX9vuXJAlIaUUpRoFU0BAWgWR0CS9Lv+wTufdX2UKGgGaAloD0MIaR1VTVDhcUCUhpRSlGgVTX8BaBZHQJL1KKrJbMZ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef28e3f753565ca617f12bf9138976a4530e8952df822021a9b7523a6a7578a4
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a58e9e4230b2cfa77885cac48f2568b4479a10f9d74d2e9bf8adee137ec7cd23
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (192 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 253.03396739275385, "std_reward": 22.80848312420986, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-29T01:29:55.076428"}