File size: 2,827 Bytes
6d67534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
language:
- zh
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-small
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# openai/whisper-small

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the pphuc25/ChiMed dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1189
- Wer: 80.7466
- Cer: 23.1952

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer      | Cer     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------:|
| 0.6947        | 1.0   | 161  | 0.8771          | 224.7544 | 75.6462 |
| 0.3688        | 2.0   | 322  | 0.8461          | 107.2692 | 32.0187 |
| 0.2168        | 3.0   | 483  | 0.9040          | 84.8723  | 26.0472 |
| 0.1117        | 4.0   | 644  | 0.9532          | 90.5697  | 28.1640 |
| 0.0928        | 5.0   | 805  | 0.9663          | 89.7839  | 28.2977 |
| 0.0672        | 6.0   | 966  | 1.0584          | 87.2299  | 31.1275 |
| 0.0534        | 7.0   | 1127 | 1.0810          | 86.4440  | 28.5651 |
| 0.0443        | 8.0   | 1288 | 1.0709          | 83.8900  | 29.1889 |
| 0.0415        | 9.0   | 1449 | 1.0984          | 85.0688  | 26.4929 |
| 0.0198        | 10.0  | 1610 | 1.1180          | 89.9804  | 27.3841 |
| 0.0182        | 11.0  | 1771 | 1.0824          | 86.4440  | 27.1613 |
| 0.0116        | 12.0  | 1932 | 1.1320          | 85.6582  | 26.1809 |
| 0.0107        | 13.0  | 2093 | 1.1042          | 82.5147  | 24.6658 |
| 0.0075        | 14.0  | 2254 | 1.1034          | 80.9430  | 24.5989 |
| 0.0021        | 15.0  | 2415 | 1.0967          | 78.9784  | 23.3734 |
| 0.0003        | 16.0  | 2576 | 1.1061          | 81.1395  | 23.4848 |
| 0.0002        | 17.0  | 2737 | 1.1144          | 81.1395  | 23.5294 |
| 0.0002        | 18.0  | 2898 | 1.1173          | 81.1395  | 23.3957 |
| 0.0004        | 19.0  | 3059 | 1.1184          | 80.7466  | 23.1506 |
| 0.0003        | 20.0  | 3220 | 1.1189          | 80.7466  | 23.1952 |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1