File size: 2,828 Bytes
ba1d93f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6fe861
 
 
ba1d93f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6fe861
ba1d93f
 
 
e45b135
 
f6fe861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba1d93f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
language:
- zh
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-small
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# openai/whisper-small

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the pphuc25/ChiMed dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9626
- Wer: 102.9470
- Cer: 27.5178

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer      | Cer     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------:|
| 0.5624        | 1.0   | 161  | 0.7102          | 103.7328 | 36.8093 |
| 0.2753        | 2.0   | 322  | 0.7326          | 117.6817 | 44.2291 |
| 0.127         | 3.0   | 483  | 0.7775          | 86.0511  | 31.1720 |
| 0.0519        | 4.0   | 644  | 0.8256          | 103.5363 | 31.2834 |
| 0.0423        | 5.0   | 805  | 0.8966          | 119.4499 | 36.9207 |
| 0.0251        | 6.0   | 966  | 0.8908          | 105.8939 | 29.3449 |
| 0.0137        | 7.0   | 1127 | 0.9214          | 84.6758  | 26.2478 |
| 0.0169        | 8.0   | 1288 | 0.9114          | 87.0334  | 24.3761 |
| 0.0107        | 9.0   | 1449 | 0.9319          | 104.9116 | 28.4759 |
| 0.0025        | 10.0  | 1610 | 0.9353          | 103.5363 | 27.3173 |
| 0.0007        | 11.0  | 1771 | 0.9370          | 105.6974 | 28.9216 |
| 0.0017        | 12.0  | 1932 | 0.9412          | 103.3399 | 27.8075 |
| 0.0006        | 13.0  | 2093 | 0.9438          | 102.3576 | 27.7852 |
| 0.0003        | 14.0  | 2254 | 0.9575          | 103.5363 | 29.3449 |
| 0.0003        | 15.0  | 2415 | 0.9568          | 102.3576 | 27.8743 |
| 0.0002        | 16.0  | 2576 | 0.9591          | 103.1434 | 27.6738 |
| 0.0002        | 17.0  | 2737 | 0.9601          | 102.9470 | 27.5401 |
| 0.0002        | 18.0  | 2898 | 0.9613          | 102.7505 | 27.5178 |
| 0.0002        | 19.0  | 3059 | 0.9622          | 102.9470 | 27.5401 |
| 0.0002        | 20.0  | 3220 | 0.9626          | 102.9470 | 27.5178 |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1