File size: 2,578 Bytes
49b88e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3841fc9
 
49b88e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3841fc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49b88e9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-tiny
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# openai/whisper-tiny

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Hanhpt23/ChineseMed dataset.
It achieves the following results on the evaluation set:
- Loss: 4.7716
- Wer: 115.5556

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer      |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2347        | 1.0   | 371  | 3.0537          | 111.1111 |
| 1.7551        | 2.0   | 742  | 3.0133          | 105.5556 |
| 1.3384        | 3.0   | 1113 | 3.2446          | 107.7778 |
| 0.7899        | 4.0   | 1484 | 3.5971          | 112.2222 |
| 0.424         | 5.0   | 1855 | 3.8711          | 117.7778 |
| 0.179         | 6.0   | 2226 | 4.0705          | 137.7778 |
| 0.0953        | 7.0   | 2597 | 4.2723          | 112.2222 |
| 0.0628        | 8.0   | 2968 | 4.4901          | 116.6667 |
| 0.0386        | 9.0   | 3339 | 4.3978          | 113.3333 |
| 0.0299        | 10.0  | 3710 | 4.5975          | 113.3333 |
| 0.0198        | 11.0  | 4081 | 4.6376          | 108.8889 |
| 0.0074        | 12.0  | 4452 | 4.6874          | 112.2222 |
| 0.0046        | 13.0  | 4823 | 4.6807          | 110.0000 |
| 0.0006        | 14.0  | 5194 | 4.7271          | 117.7778 |
| 0.0052        | 15.0  | 5565 | 4.7211          | 111.1111 |
| 0.0017        | 16.0  | 5936 | 4.7438          | 112.2222 |
| 0.0003        | 17.0  | 6307 | 4.7391          | 120.0    |
| 0.0002        | 18.0  | 6678 | 4.7585          | 120.0    |
| 0.0002        | 19.0  | 7049 | 4.7621          | 114.4444 |
| 0.0002        | 20.0  | 7420 | 4.7716          | 115.5556 |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1