File size: 2,615 Bytes
49b88e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
language:
- zh
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-tiny
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# openai/whisper-tiny

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Hanhpt23/ChineseMed dataset.
It achieves the following results on the evaluation set:
- Loss: 5.4554
- Wer: 132.7991

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer      |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 3.0558        | 1.0   | 2222  | 3.0833          | 127.4184 |
| 2.5492        | 2.0   | 4444  | 3.0648          | 130.1088 |
| 2.0618        | 3.0   | 6666  | 3.2779          | 112.4785 |
| 1.5376        | 4.0   | 8888  | 3.6124          | 132.1122 |
| 1.1944        | 5.0   | 11110 | 3.9546          | 112.3641 |
| 0.8561        | 6.0   | 13332 | 4.3130          | 125.9874 |
| 0.6536        | 7.0   | 15554 | 4.5104          | 138.4659 |
| 0.4346        | 8.0   | 17776 | 4.7482          | 113.7378 |
| 0.411         | 9.0   | 19998 | 4.9091          | 134.0584 |
| 0.3214        | 10.0  | 22220 | 4.9981          | 124.9571 |
| 0.3408        | 11.0  | 24442 | 5.0642          | 137.0922 |
| 0.2991        | 12.0  | 26664 | 5.1118          | 116.9433 |
| 0.3083        | 13.0  | 28886 | 5.2996          | 132.7418 |
| 0.2714        | 14.0  | 31108 | 5.3376          | 115.1116 |
| 0.3389        | 15.0  | 33330 | 5.3140          | 125.2433 |
| 0.2698        | 16.0  | 35552 | 5.3652          | 116.7716 |
| 0.2698        | 17.0  | 37774 | 5.3976          | 118.8323 |
| 0.2836        | 18.0  | 39996 | 5.4280          | 123.9267 |
| 0.2192        | 19.0  | 42218 | 5.4235          | 131.3108 |
| 0.2257        | 20.0  | 44440 | 5.4554          | 132.7991 |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1