Harrier commited on
Commit
38bf4fa
·
1 Parent(s): a1fdc34

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1596.00 +/- 357.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fae3b54ff5a831925713dfad74fe6178a3f3c0e81a03e1cb72c5d3d840844756
3
+ size 129195
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2ed6fc5200>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2ed6fc5290>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2ed6fc5320>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2ed6fc53b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2ed6fc5440>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2ed6fc54d0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2ed6fc5560>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2ed6fc55f0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2ed6fc5680>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2ed6fc5710>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2ed6fc57a0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f2ed7007b70>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1669035066711112864,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAn5KQPvFi4D6x2hI/i56cP6MzIb8Dwwk/GUyIPeeyib2mcRA+fZ85vwAfg71XAqG/STOKv/MDDD82RN2+uDJYP/rIGb/LxiI9eKFrPMulab9hGSq/VfqSvz847T7G0MM+zeiOvxdv6j6/Iwc/idWEP1Q96D9xRDU/9az/PhvKRT/T4c2/e43hv07ba7/4gDO/Vr9NP6Cjg7yMiJE/uoLZvSRr0bxO0Ui+0loJvc0jLD81MSLA5PBQP2G9Rr7wZWVAiHbuP3gExj8a13K/7boiPspKZT8Xb+o+oXnyvwCvdr/9naw/OxUPQA4UiMDF2ia/OJP9vhuiyj4c6ci/swjmv48vwj4Qfnm/zon0PxSDWL8mfYe/TlPyPjwhNT+AQFA+BW3wvuhyOD/4xcG+Oe2av+GE0L6HCe6/KS03QEt7yT/N6I6/F2/qPr8jBz8Ar3a/1K+WP+7Sdr4rVAI/B0EfvtIkwD6shZe/noofv+zW7T7buOO+xIV9vt15zj732GI9ji+QP5wrFcD/vkg+GaZUQLNyBMAUoh/AfNTKvzeY8j/wHA1ACx8wvxqjmj5ZcVS/zeiOv2TGC8C/Iwc/AK92v5R0lGIu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAL38fLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAZyk09AAAAAFDn778AAAAA1LyAvQAAAAAUoeU/AAAAALRTQrwAAAAA3eL5PwAAAABk/xo9AAAAAAdF4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyRuE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApt/ZvQAAAACnmNy/AAAAAOXUizwAAAAAkqP4PwAAAABt0vk9AAAAALp05z8AAAAAvTYyvQAAAAASeu6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//tQtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgK29P70AAAAATnf0vwAAAACj+FQ9AAAAAFx92j8AAAAAEmLuvQAAAACgsOo/AAAAABpK4T0AAAAA1in9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECPNbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICibg49AAAAALD3+b8AAAAAN/AzvQAAAACpPgFAAAAAAIwwdz0AAAAAI5P/PwAAAAD7kcM9AAAAAEvD9r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKBmcl2NedGMAWyUTegDjAF0lEdArHrUWEbo83V9lChoBkdAoDe/Dxb0OGgHTegDaAhHQKyDmPV/c351fZQoaAZHQKB/yC+UQkJoB03oA2gIR0CshVyMUAT7dX2UKGgGR0CgPrEZaV2SaAdN6ANoCEdArIV4LVnVXnV9lChoBkdAoIEpL26ClWgHTegDaAhHQKyL0NiH6/J1fZQoaAZHQJ9AwSlFc6hoB03oA2gIR0Cskq5AQg9vdX2UKGgGR0CeDN+CK77LaAdN6ANoCEdArJR4Difg8HV9lChoBkdAn19S8e0XxmgHTegDaAhHQKyUk5Dqnm91fZQoaAZHQJ/jYe1a4c5oB03oA2gIR0Csmt8Ti83/dX2UKGgGR0Ca+XcLSeAeaAdN6ANoCEdArKGuTPjXF3V9lChoBkdAncMJWq94/2gHTegDaAhHQKyjaXm/3391fZQoaAZHQJ2IEXUH6dloB03oA2gIR0Cso4Yk3S8bdX2UKGgGR0CdjxBU70WeaAdN6ANoCEdArKnFhZyMk3V9lChoBkdAnnULQ5WBBmgHTegDaAhHQKywg4Nqgyx1fZQoaAZHQJ6Pdlbu+h5oB03oA2gIR0Cssj02tMfzdX2UKGgGR0CTU5nFYMfBaAdN6ANoCEdArLJYf2bobHV9lChoBkdAnhYUuxrzoWgHTegDaAhHQKy4hph4MWp1fZQoaAZHQJzGP/m1YyRoB03oA2gIR0CsvyurQw9JdX2UKGgGR0CfMrQbuMMraAdN6ANoCEdArMDqAhB7eHV9lChoBkdAnX+oJiRW92gHTegDaAhHQKzBBXVbzK91fZQoaAZHQJo1QcGTs6doB03oA2gIR0Csx2EYXO4YdX2UKGgGR0CbZ5yHmA9WaAdN6ANoCEdArM4b7ZWaMXV9lChoBkdAmCZ4vN/vv2gHTegDaAhHQKzP6gTRIBl1fZQoaAZHQJ1AhuVHFxZoB03oA2gIR0Cs0AUL+glGdX2UKGgGR0Cdf6LGJemfaAdN6ANoCEdArNZBQYUFjnV9lChoBkdAm4DO9i+cpmgHTegDaAhHQKzc9vUjLSx1fZQoaAZHQJxknqqwQlNoB03oA2gIR0Cs3r5ckdFOdX2UKGgGR0CbHs1mapgkaAdN6ANoCEdArN7Z59mYjXV9lChoBkdAmh7eTmnwX2gHTegDaAhHQKzlNFBppN91fZQoaAZHQJvaHEsJ6Y5oB03oA2gIR0Cs7AAdGRV7dX2UKGgGR0CamWxvNu+AaAdN6ANoCEdArO3BgLJCB3V9lChoBkdAmk5r/4qPO2gHTegDaAhHQKzt3vb48EF1fZQoaAZHQJsLL2HtWuJoB03oA2gIR0Cs9EeXRgJDdX2UKGgGR0CbrmBP9DQaaAdN6ANoCEdArPr8hHLA6HV9lChoBkdAnQ+vk3juKGgHTegDaAhHQKz8wYkVvdd1fZQoaAZHQJ2BWMOwxFloB03oA2gIR0Cs/NxHf/FSdX2UKGgGR0Cci9Kl54W2aAdN6ANoCEdArQNrS1E3KnV9lChoBkdAnc1je0ojOmgHTegDaAhHQK0MFWEsasJ1fZQoaAZHQJ5P28+RoytoB03oA2gIR0CtDdYwqRU4dX2UKGgGR0CgKBmA08/2aAdN6ANoCEdArQ3xSeiBXnV9lChoBkdAnxpQKWszVWgHTegDaAhHQK0UW0v4/NZ1fZQoaAZHQJQVFnVXmvJoB03oA2gIR0CtGzZBTn7pdX2UKGgGR0CYaPbXpW3jaAdN6ANoCEdArRz8DGLk0nV9lChoBkdAoF3rSLIgeWgHTegDaAhHQK0dF/7SApd1fZQoaAZHQJUWfWNFSbZoB03oA2gIR0CtI3ilrM1TdX2UKGgGR0CH6U4cWCVbaAdN6ANoCEdArSpa+zt1IXV9lChoBkdAgfKp6yB062gHTegDaAhHQK0sG29cry11fZQoaAZHQJqyECmuTzNoB03oA2gIR0CtLDa6z3RHdX2UKGgGR0Ce8DocaOxTaAdN6ANoCEdArTKihUR3/3V9lChoBkdAmfpK77Kq42gHTegDaAhHQK05duYQarF1fZQoaAZHQJvVIi5d4V1oB03oA2gIR0CtOzIaDPGAdX2UKGgGR0B/CLVMEidKaAdN6ANoCEdArTtNWZJCjXV9lChoBkdAlJnMspXp4mgHTegDaAhHQK1BpmITGo91fZQoaAZHQJmhf7pFCsxoB03oA2gIR0CtSFT+FUQ1dX2UKGgGR0CcNuWoFV1faAdN6ANoCEdArUojSNOuaHV9lChoBkdAnms4nBtUGWgHTegDaAhHQK1KPyT6i0x1fZQoaAZHQJ6w+cNH6M1oB03oA2gIR0CtUIUExIrfdX2UKGgGR0Cc207btZ3caAdN6ANoCEdArVdCNn5BTnV9lChoBkdAnISC8BdUsGgHTegDaAhHQK1Y/1+y7f51fZQoaAZHQJkOhDKHO8loB03oA2gIR0CtWRsEaESNdX2UKGgGR0CZe3OLR8c/aAdN6ANoCEdArV9tD8cdYHV9lChoBkdAnHijPa+N+GgHTegDaAhHQK1mQaF23a11fZQoaAZHQJ7Z2D/VAiVoB03oA2gIR0CtaAidrftQdX2UKGgGR0CWpOZ6D5CXaAdN6ANoCEdArWgkV1wHaHV9lChoBkdAnFcvu5SWJWgHTegDaAhHQK1uiCQtBfN1fZQoaAZHQI8cTR0EHMVoB03oA2gIR0CtdVnaWX1KdX2UKGgGR0Cd9sD6Fds0aAdN6ANoCEdArXcduk1uSHV9lChoBkdAnNxAxnFo+WgHTegDaAhHQK13OelsP8R1fZQoaAZHQJ0BcoYvWYpoB03oA2gIR0CtfcJJXhfjdX2UKGgGR0CcZcqZ+hGpaAdN6ANoCEdArYR/8TBZZHV9lChoBkdAl+/V/YraumgHTegDaAhHQK2GSf4h2W91fZQoaAZHQJXtmTbFjutoB03oA2gIR0Cthm0YTCcgdX2UKGgGR0CbIc0uUUwjaAdN6ANoCEdArY47tkWhy3V9lChoBkdAny9Nv0h/zGgHTegDaAhHQK2Vm0ojOcF1fZQoaAZHQI/kDCiyprFoB03oA2gIR0Ctl125paicdX2UKGgGR0CZv+1rZamoaAdN6ANoCEdArZd5oPCl8HV9lChoBkdAm/0b9ETg22gHTegDaAhHQK2dwa2nbZh1fZQoaAZHQJLLgRDkU9JoB03oA2gIR0CtpIR7RfF8dX2UKGgGR0CYNpZsbedkaAdN6ANoCEdAraY9BQemvXV9lChoBkdAk2Q23rleW2gHTegDaAhHQK2mWI42jwh1fZQoaAZHQJeE5CUornVoB03oA2gIR0CtrJ+WOZLJdX2UKGgGR0CQgMQemvW6aAdN6ANoCEdArbNcXrMTvnV9lChoBkdAn8DUbLlmvmgHTegDaAhHQK21I/u9eyB1fZQoaAZHQH6x/xDst05oB03oA2gIR0CttUAs052hdX2UKGgGR0CdiOXI2fkFaAdN6ANoCEdArbujDKoybnV9lChoBkdAmfO+VLSNO2gHTegDaAhHQK3CceIVM251fZQoaAZHQJwq48zQ/otoB03oA2gIR0CtxEdXT3IudX2UKGgGR0CbbO3+dbxFaAdN6ANoCEdArcRjdYW+G3V9lChoBkdAjPsLsa86FWgHTegDaAhHQK3KvnvlU6x1fZQoaAZHQJiD1YRujypoB03oA2gIR0Ct0ZKXF98adX2UKGgGR0CFOeDZDiOvaAdN6ANoCEdArdNYoXsPa3V9lChoBkdAmX4NkJ8fFWgHTegDaAhHQK3TdFb3XZp1fZQoaAZHQJpzjkbPyCpoB03oA2gIR0Ct2cOh0yP/dX2UKGgGR0CfHiQOFxn4aAdN6ANoCEdAreCMXWOIZnV9lChoBkdAnmUCD/VAiWgHTegDaAhHQK3iQpcX3xp1fZQoaAZHQJr7G87IT5BoB03oA2gIR0Ct4l783uNQdX2UKGgGR0CbiTNoJzDGaAdN6ANoCEdAreirw2ETQHV9lChoBkdAlfdRfBvaUWgHTegDaAhHQK3vbGRV6u51fZQoaAZHQJsGUOf/WDpoB03oA2gIR0Ct8SUVBUrDdX2UKGgGR0CX5nXhOxjbaAdN6ANoCEdArfFA0fozN3VlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3aece7f5f911dc08d2630f90c448ce564ce6eb6534945d38c91e8e0025c2c7f
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ef06c8b2f8cedcfd1c90abaf5368a6eb5f1d3f43d0e6aee1e973afacc1d7214
3
+ size 56766
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2ed6fc5200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2ed6fc5290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2ed6fc5320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2ed6fc53b0>", "_build": "<function ActorCriticPolicy._build at 0x7f2ed6fc5440>", "forward": "<function ActorCriticPolicy.forward at 0x7f2ed6fc54d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2ed6fc5560>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2ed6fc55f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2ed6fc5680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2ed6fc5710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2ed6fc57a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2ed7007b70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1669035066711112864, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAn5KQPvFi4D6x2hI/i56cP6MzIb8Dwwk/GUyIPeeyib2mcRA+fZ85vwAfg71XAqG/STOKv/MDDD82RN2+uDJYP/rIGb/LxiI9eKFrPMulab9hGSq/VfqSvz847T7G0MM+zeiOvxdv6j6/Iwc/idWEP1Q96D9xRDU/9az/PhvKRT/T4c2/e43hv07ba7/4gDO/Vr9NP6Cjg7yMiJE/uoLZvSRr0bxO0Ui+0loJvc0jLD81MSLA5PBQP2G9Rr7wZWVAiHbuP3gExj8a13K/7boiPspKZT8Xb+o+oXnyvwCvdr/9naw/OxUPQA4UiMDF2ia/OJP9vhuiyj4c6ci/swjmv48vwj4Qfnm/zon0PxSDWL8mfYe/TlPyPjwhNT+AQFA+BW3wvuhyOD/4xcG+Oe2av+GE0L6HCe6/KS03QEt7yT/N6I6/F2/qPr8jBz8Ar3a/1K+WP+7Sdr4rVAI/B0EfvtIkwD6shZe/noofv+zW7T7buOO+xIV9vt15zj732GI9ji+QP5wrFcD/vkg+GaZUQLNyBMAUoh/AfNTKvzeY8j/wHA1ACx8wvxqjmj5ZcVS/zeiOv2TGC8C/Iwc/AK92v5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAL38fLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAZyk09AAAAAFDn778AAAAA1LyAvQAAAAAUoeU/AAAAALRTQrwAAAAA3eL5PwAAAABk/xo9AAAAAAdF4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyRuE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApt/ZvQAAAACnmNy/AAAAAOXUizwAAAAAkqP4PwAAAABt0vk9AAAAALp05z8AAAAAvTYyvQAAAAASeu6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//tQtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgK29P70AAAAATnf0vwAAAACj+FQ9AAAAAFx92j8AAAAAEmLuvQAAAACgsOo/AAAAABpK4T0AAAAA1in9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECPNbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICibg49AAAAALD3+b8AAAAAN/AzvQAAAACpPgFAAAAAAIwwdz0AAAAAI5P/PwAAAAD7kcM9AAAAAEvD9r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKBmcl2NedGMAWyUTegDjAF0lEdArHrUWEbo83V9lChoBkdAoDe/Dxb0OGgHTegDaAhHQKyDmPV/c351fZQoaAZHQKB/yC+UQkJoB03oA2gIR0CshVyMUAT7dX2UKGgGR0CgPrEZaV2SaAdN6ANoCEdArIV4LVnVXnV9lChoBkdAoIEpL26ClWgHTegDaAhHQKyL0NiH6/J1fZQoaAZHQJ9AwSlFc6hoB03oA2gIR0Cskq5AQg9vdX2UKGgGR0CeDN+CK77LaAdN6ANoCEdArJR4Difg8HV9lChoBkdAn19S8e0XxmgHTegDaAhHQKyUk5Dqnm91fZQoaAZHQJ/jYe1a4c5oB03oA2gIR0Csmt8Ti83/dX2UKGgGR0Ca+XcLSeAeaAdN6ANoCEdArKGuTPjXF3V9lChoBkdAncMJWq94/2gHTegDaAhHQKyjaXm/3391fZQoaAZHQJ2IEXUH6dloB03oA2gIR0Cso4Yk3S8bdX2UKGgGR0CdjxBU70WeaAdN6ANoCEdArKnFhZyMk3V9lChoBkdAnnULQ5WBBmgHTegDaAhHQKywg4Nqgyx1fZQoaAZHQJ6Pdlbu+h5oB03oA2gIR0Cssj02tMfzdX2UKGgGR0CTU5nFYMfBaAdN6ANoCEdArLJYf2bobHV9lChoBkdAnhYUuxrzoWgHTegDaAhHQKy4hph4MWp1fZQoaAZHQJzGP/m1YyRoB03oA2gIR0CsvyurQw9JdX2UKGgGR0CfMrQbuMMraAdN6ANoCEdArMDqAhB7eHV9lChoBkdAnX+oJiRW92gHTegDaAhHQKzBBXVbzK91fZQoaAZHQJo1QcGTs6doB03oA2gIR0Csx2EYXO4YdX2UKGgGR0CbZ5yHmA9WaAdN6ANoCEdArM4b7ZWaMXV9lChoBkdAmCZ4vN/vv2gHTegDaAhHQKzP6gTRIBl1fZQoaAZHQJ1AhuVHFxZoB03oA2gIR0Cs0AUL+glGdX2UKGgGR0Cdf6LGJemfaAdN6ANoCEdArNZBQYUFjnV9lChoBkdAm4DO9i+cpmgHTegDaAhHQKzc9vUjLSx1fZQoaAZHQJxknqqwQlNoB03oA2gIR0Cs3r5ckdFOdX2UKGgGR0CbHs1mapgkaAdN6ANoCEdArN7Z59mYjXV9lChoBkdAmh7eTmnwX2gHTegDaAhHQKzlNFBppN91fZQoaAZHQJvaHEsJ6Y5oB03oA2gIR0Cs7AAdGRV7dX2UKGgGR0CamWxvNu+AaAdN6ANoCEdArO3BgLJCB3V9lChoBkdAmk5r/4qPO2gHTegDaAhHQKzt3vb48EF1fZQoaAZHQJsLL2HtWuJoB03oA2gIR0Cs9EeXRgJDdX2UKGgGR0CbrmBP9DQaaAdN6ANoCEdArPr8hHLA6HV9lChoBkdAnQ+vk3juKGgHTegDaAhHQKz8wYkVvdd1fZQoaAZHQJ2BWMOwxFloB03oA2gIR0Cs/NxHf/FSdX2UKGgGR0Cci9Kl54W2aAdN6ANoCEdArQNrS1E3KnV9lChoBkdAnc1je0ojOmgHTegDaAhHQK0MFWEsasJ1fZQoaAZHQJ5P28+RoytoB03oA2gIR0CtDdYwqRU4dX2UKGgGR0CgKBmA08/2aAdN6ANoCEdArQ3xSeiBXnV9lChoBkdAnxpQKWszVWgHTegDaAhHQK0UW0v4/NZ1fZQoaAZHQJQVFnVXmvJoB03oA2gIR0CtGzZBTn7pdX2UKGgGR0CYaPbXpW3jaAdN6ANoCEdArRz8DGLk0nV9lChoBkdAoF3rSLIgeWgHTegDaAhHQK0dF/7SApd1fZQoaAZHQJUWfWNFSbZoB03oA2gIR0CtI3ilrM1TdX2UKGgGR0CH6U4cWCVbaAdN6ANoCEdArSpa+zt1IXV9lChoBkdAgfKp6yB062gHTegDaAhHQK0sG29cry11fZQoaAZHQJqyECmuTzNoB03oA2gIR0CtLDa6z3RHdX2UKGgGR0Ce8DocaOxTaAdN6ANoCEdArTKihUR3/3V9lChoBkdAmfpK77Kq42gHTegDaAhHQK05duYQarF1fZQoaAZHQJvVIi5d4V1oB03oA2gIR0CtOzIaDPGAdX2UKGgGR0B/CLVMEidKaAdN6ANoCEdArTtNWZJCjXV9lChoBkdAlJnMspXp4mgHTegDaAhHQK1BpmITGo91fZQoaAZHQJmhf7pFCsxoB03oA2gIR0CtSFT+FUQ1dX2UKGgGR0CcNuWoFV1faAdN6ANoCEdArUojSNOuaHV9lChoBkdAnms4nBtUGWgHTegDaAhHQK1KPyT6i0x1fZQoaAZHQJ6w+cNH6M1oB03oA2gIR0CtUIUExIrfdX2UKGgGR0Cc207btZ3caAdN6ANoCEdArVdCNn5BTnV9lChoBkdAnISC8BdUsGgHTegDaAhHQK1Y/1+y7f51fZQoaAZHQJkOhDKHO8loB03oA2gIR0CtWRsEaESNdX2UKGgGR0CZe3OLR8c/aAdN6ANoCEdArV9tD8cdYHV9lChoBkdAnHijPa+N+GgHTegDaAhHQK1mQaF23a11fZQoaAZHQJ7Z2D/VAiVoB03oA2gIR0CtaAidrftQdX2UKGgGR0CWpOZ6D5CXaAdN6ANoCEdArWgkV1wHaHV9lChoBkdAnFcvu5SWJWgHTegDaAhHQK1uiCQtBfN1fZQoaAZHQI8cTR0EHMVoB03oA2gIR0CtdVnaWX1KdX2UKGgGR0Cd9sD6Fds0aAdN6ANoCEdArXcduk1uSHV9lChoBkdAnNxAxnFo+WgHTegDaAhHQK13OelsP8R1fZQoaAZHQJ0BcoYvWYpoB03oA2gIR0CtfcJJXhfjdX2UKGgGR0CcZcqZ+hGpaAdN6ANoCEdArYR/8TBZZHV9lChoBkdAl+/V/YraumgHTegDaAhHQK2GSf4h2W91fZQoaAZHQJXtmTbFjutoB03oA2gIR0Cthm0YTCcgdX2UKGgGR0CbIc0uUUwjaAdN6ANoCEdArY47tkWhy3V9lChoBkdAny9Nv0h/zGgHTegDaAhHQK2Vm0ojOcF1fZQoaAZHQI/kDCiyprFoB03oA2gIR0Ctl125paicdX2UKGgGR0CZv+1rZamoaAdN6ANoCEdArZd5oPCl8HV9lChoBkdAm/0b9ETg22gHTegDaAhHQK2dwa2nbZh1fZQoaAZHQJLLgRDkU9JoB03oA2gIR0CtpIR7RfF8dX2UKGgGR0CYNpZsbedkaAdN6ANoCEdAraY9BQemvXV9lChoBkdAk2Q23rleW2gHTegDaAhHQK2mWI42jwh1fZQoaAZHQJeE5CUornVoB03oA2gIR0CtrJ+WOZLJdX2UKGgGR0CQgMQemvW6aAdN6ANoCEdArbNcXrMTvnV9lChoBkdAn8DUbLlmvmgHTegDaAhHQK21I/u9eyB1fZQoaAZHQH6x/xDst05oB03oA2gIR0CttUAs052hdX2UKGgGR0CdiOXI2fkFaAdN6ANoCEdArbujDKoybnV9lChoBkdAmfO+VLSNO2gHTegDaAhHQK3CceIVM251fZQoaAZHQJwq48zQ/otoB03oA2gIR0CtxEdXT3IudX2UKGgGR0CbbO3+dbxFaAdN6ANoCEdArcRjdYW+G3V9lChoBkdAjPsLsa86FWgHTegDaAhHQK3KvnvlU6x1fZQoaAZHQJiD1YRujypoB03oA2gIR0Ct0ZKXF98adX2UKGgGR0CFOeDZDiOvaAdN6ANoCEdArdNYoXsPa3V9lChoBkdAmX4NkJ8fFWgHTegDaAhHQK3TdFb3XZp1fZQoaAZHQJpzjkbPyCpoB03oA2gIR0Ct2cOh0yP/dX2UKGgGR0CfHiQOFxn4aAdN6ANoCEdAreCMXWOIZnV9lChoBkdAnmUCD/VAiWgHTegDaAhHQK3iQpcX3xp1fZQoaAZHQJr7G87IT5BoB03oA2gIR0Ct4l783uNQdX2UKGgGR0CbiTNoJzDGaAdN6ANoCEdAreirw2ETQHV9lChoBkdAlfdRfBvaUWgHTegDaAhHQK3vbGRV6u51fZQoaAZHQJsGUOf/WDpoB03oA2gIR0Ct8SUVBUrDdX2UKGgGR0CX5nXhOxjbaAdN6ANoCEdArfFA0fozN3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4a0ce8df397ffb19891cef61228316ab608de96064cf710af56465d35c6edb4
3
+ size 1004289
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1595.9975717893103, "std_reward": 357.12310035774004, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-21T14:04:20.401091"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2373d9376cdd8f9c2f441b05dfed8e1d315dfc0cad94941c7ffa312422761634
3
+ size 2763