Hawk91 commited on
Commit
918b1c9
1 Parent(s): 79a45a9

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -2.56 +/- 1.03
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -1.48 +/- 0.69
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:66d78c5ad51e5b42f2c51a85111a655d4c0fbef0f33671657cf560597d76255e
3
  size 107987
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e96a111aa37c0fcb82a536deb75eaca720037f94cb62c2142966de77fd09cd68
3
  size 107987
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fdd7c276790>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc_data object at 0x7fdd7c270a50>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -46,7 +46,7 @@
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1677152891528604284,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
@@ -55,10 +55,10 @@
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoiu9PnYukDzbeAM/oiu9PnYukDzbeAM/oiu9PnYukDzbeAM/oiu9PnYukDzbeAM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAadgtPyAW1b+azJs8MdcNP6GalT3Aemq+AD72vewxo7+CJ3s/XrQ4v6fX+b7FVjw8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACiK70+di6QPNt4Az99vjY89odQO5Q2CDqiK70+di6QPNt4Az99vjY89odQO5Q2CDqiK70+di6QPNt4Az99vjY89odQO5Q2CDqiK70+di6QPNt4Az99vjY89odQO5Q2CDqUaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[0.36947352 0.01760028 0.51356286]\n [0.36947352 0.01760028 0.51356286]\n [0.36947352 0.01760028 0.51356286]\n [0.36947352 0.01760028 0.51356286]]",
60
- "desired_goal": "[[ 0.6790834 -1.6647377 0.01901846]\n [ 0.5540648 0.07304884 -0.22898388]\n [-0.12023544 -1.274961 0.9810716 ]\n [-0.7215022 -0.48797342 0.0114953 ]]",
61
- "observation": "[[0.36947352 0.01760028 0.51356286 0.01115381 0.00318193 0.00051961]\n [0.36947352 0.01760028 0.51356286 0.01115381 0.00318193 0.00051961]\n [0.36947352 0.01760028 0.51356286 0.01115381 0.00318193 0.00051961]\n [0.36947352 0.01760028 0.51356286 0.01115381 0.00318193 0.00051961]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,9 +66,9 @@
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlP2BPXDPNL3DKvc8bpO+PcgxxT1zu+89BqGrvT99Er4PezI+ay4mPYNSFz4x5ls+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[ 0.06347194 -0.04414314 0.03017176]\n [ 0.09305464 0.09628636 0.11705675]\n [-0.08380322 -0.1430559 0.17429756]\n [ 0.04057161 0.1477757 0.2147453 ]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
@@ -77,7 +77,7 @@
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzxH5LqUuF8CUhpRSlIwBbJRLMowBdJRHQKidjWZqmCR1fZQoaAZoCWgPQwhvnX+77PcSwJSGlFKUaBVLMmgWR0ConTlkhA4XdX2UKGgGaAloD0MIfR8OEqL8EsCUhpRSlGgVSzJoFkdAqJzkKRdQf3V9lChoBmgJaA9DCONSlba4JgbAlIaUUpRoFUsyaBZHQKiccrCm/Fl1fZQoaAZoCWgPQwiy8WCL3S4QwJSGlFKUaBVLMmgWR0Cons6RISUUdX2UKGgGaAloD0MINjrnpzjOAMCUhpRSlGgVSzJoFkdAqJ56ef7Jn3V9lChoBmgJaA9DCEMfLGND1wbAlIaUUpRoFUsyaBZHQKieJWz4UN91fZQoaAZoCWgPQwg4u7VMhqMQwJSGlFKUaBVLMmgWR0ConbQBPsRhdX2UKGgGaAloD0MIp5IBoIobHMCUhpRSlGgVSzJoFkdAqKASCBf8dnV9lChoBmgJaA9DCJbOh2cJ0hjAlIaUUpRoFUsyaBZHQKifvdO6/Zd1fZQoaAZoCWgPQwhoWIy61u4VwJSGlFKUaBVLMmgWR0Con2iItUXIdX2UKGgGaAloD0MIMgIqHEGKCMCUhpRSlGgVSzJoFkdAqJ7240/GEXV9lChoBmgJaA9DCJeRek/lNO+/lIaUUpRoFUsyaBZHQKihQpkPMB91fZQoaAZoCWgPQwjyecVTj1QHwJSGlFKUaBVLMmgWR0CooO5QP7N0dX2UKGgGaAloD0MIxQQ1fAvLFcCUhpRSlGgVSzJoFkdAqKCZBVuJlHV9lChoBmgJaA9DCGfxYmGITBDAlIaUUpRoFUsyaBZHQKigJ12aDwp1fZQoaAZoCWgPQwj36XjMQKUDwJSGlFKUaBVLMmgWR0CoompZfUnYdX2UKGgGaAloD0MI0R4vpMPDCcCUhpRSlGgVSzJoFkdAqKIWKXOW0XV9lChoBmgJaA9DCFezzvi+OBLAlIaUUpRoFUsyaBZHQKihwNsnAqN1fZQoaAZoCWgPQwi8Bn3p7V8XwJSGlFKUaBVLMmgWR0CooU9FnZkDdX2UKGgGaAloD0MIQnv18dBXDMCUhpRSlGgVSzJoFkdAqKOXLV4HHHV9lChoBmgJaA9DCLmoFhHFZALAlIaUUpRoFUsyaBZHQKijQ9JSR8t1fZQoaAZoCWgPQwic+dUcILgRwJSGlFKUaBVLMmgWR0Coou7+98JEdX2UKGgGaAloD0MI+HDJcae0GsCUhpRSlGgVSzJoFkdAqKJ9hJAdGXV9lChoBmgJaA9DCA3fwrrxjgrAlIaUUpRoFUsyaBZHQKikuH446wN1fZQoaAZoCWgPQwiNRj6veCr+v5SGlFKUaBVLMmgWR0CopGRA0KqodX2UKGgGaAloD0MIlL4Qct7fBcCUhpRSlGgVSzJoFkdAqKQOzru6VnV9lChoBmgJaA9DCJombD8ZUxnAlIaUUpRoFUsyaBZHQKijnUyYXwd1fZQoaAZoCWgPQwhh+8kYH2b4v5SGlFKUaBVLMmgWR0CopeBR64UfdX2UKGgGaAloD0MIenB31m7bB8CUhpRSlGgVSzJoFkdAqKWMIHC40HV9lChoBmgJaA9DCHukwW1tcSTAlIaUUpRoFUsyaBZHQKilNriVB2R1fZQoaAZoCWgPQwjHE0Gch3MCwJSGlFKUaBVLMmgWR0CopMUkv9LpdX2UKGgGaAloD0MIS3LAriYP87+UhpRSlGgVSzJoFkdAqKb7h3qzJXV9lChoBmgJaA9DCBwKn62DQwjAlIaUUpRoFUsyaBZHQKimpzXjENx1fZQoaAZoCWgPQwiI9NvXgbMXwJSGlFKUaBVLMmgWR0CoplHfdhy9dX2UKGgGaAloD0MI68N6o1a4BsCUhpRSlGgVSzJoFkdAqKXgNLDhtXV9lChoBmgJaA9DCHVat0HtJxfAlIaUUpRoFUsyaBZHQKioJGGVRk51fZQoaAZoCWgPQwhSf73CgrsMwJSGlFKUaBVLMmgWR0Cop9AMc6vJdX2UKGgGaAloD0MIJ2ppboXwIMCUhpRSlGgVSzJoFkdAqKd6jk+5fHV9lChoBmgJaA9DCMRb598uewXAlIaUUpRoFUsyaBZHQKinCPUaybB1fZQoaAZoCWgPQwjuJvim6XMMwJSGlFKUaBVLMmgWR0CoqUqdQO4HdX2UKGgGaAloD0MIOL2L9+OWC8CUhpRSlGgVSzJoFkdAqKj2maYu03V9lChoBmgJaA9DCI1BJ4QOegDAlIaUUpRoFUsyaBZHQKiooY9gWrR1fZQoaAZoCWgPQwjjVdY2xbMewJSGlFKUaBVLMmgWR0CoqDAFgUlBdX2UKGgGaAloD0MIW9HmOLcpAMCUhpRSlGgVSzJoFkdAqKpwSxqwhXV9lChoBmgJaA9DCJFgqpm1VA/AlIaUUpRoFUsyaBZHQKiqHA0sOG11fZQoaAZoCWgPQwh9I7pnXbMVwJSGlFKUaBVLMmgWR0CoqcakhzNmdX2UKGgGaAloD0MIDoKOVrXUEMCUhpRSlGgVSzJoFkdAqKlU/GEPD3V9lChoBmgJaA9DCMP0vYbgOAzAlIaUUpRoFUsyaBZHQKirkSrYGt91fZQoaAZoCWgPQwj/eoUF98MGwJSGlFKUaBVLMmgWR0CoqzzjNpuddX2UKGgGaAloD0MIeESF6uZiC8CUhpRSlGgVSzJoFkdAqKrnn2ZiNXV9lChoBmgJaA9DCIyeW+hKpBDAlIaUUpRoFUsyaBZHQKiqdgjQiRp1fZQoaAZoCWgPQwjMCkW6n/MRwJSGlFKUaBVLMmgWR0CorLDst03gdX2UKGgGaAloD0MI6rEtA85iEMCUhpRSlGgVSzJoFkdAqKxclRgqmXV9lChoBmgJaA9DCAgcCTTYtAbAlIaUUpRoFUsyaBZHQKisBye7L+x1fZQoaAZoCWgPQwgZNzXQfF4RwJSGlFKUaBVLMmgWR0Coq5WK/EfldX2UKGgGaAloD0MIDeNuEK1VFcCUhpRSlGgVSzJoFkdAqK40yN4qw3V9lChoBmgJaA9DCLQDritmxPe/lIaUUpRoFUsyaBZHQKit4VY6nzh1fZQoaAZoCWgPQwh1lIPZBDgMwJSGlFKUaBVLMmgWR0CorYzoEB8ydX2UKGgGaAloD0MISghW1cvvAMCUhpRSlGgVSzJoFkdAqK0cEzO5a3V9lChoBmgJaA9DCNODglK0UgDAlIaUUpRoFUsyaBZHQKiwD+LFXJZ1fZQoaAZoCWgPQwiuuDgqN9H5v5SGlFKUaBVLMmgWR0Cor7xqGlANdX2UKGgGaAloD0MI/n4xW7Iq97+UhpRSlGgVSzJoFkdAqK9n9itq6HV9lChoBmgJaA9DCC/dJAaB1QrAlIaUUpRoFUsyaBZHQKiu9yXlbNd1fZQoaAZoCWgPQwhsPxnjw2wDwJSGlFKUaBVLMmgWR0Cosfz1K5CodX2UKGgGaAloD0MIWb+ZmC7EBsCUhpRSlGgVSzJoFkdAqLGppcophHV9lChoBmgJaA9DCEKZRpOLoRPAlIaUUpRoFUsyaBZHQKixVTwUg0V1fZQoaAZoCWgPQwgKMZdUbVcLwJSGlFKUaBVLMmgWR0CosORagVXWdX2UKGgGaAloD0MIJ4QOuoRDEMCUhpRSlGgVSzJoFkdAqLQN1p0wJ3V9lChoBmgJaA9DCAvtnGaB1gbAlIaUUpRoFUsyaBZHQKizujxkNF11fZQoaAZoCWgPQwgUs14M5eQJwJSGlFKUaBVLMmgWR0Cos2XRoh6jdX2UKGgGaAloD0MIxCEbSBebDcCUhpRSlGgVSzJoFkdAqLL1iSaEz3V9lChoBmgJaA9DCA1VMZV+ogfAlIaUUpRoFUsyaBZHQKi2MJ/oaDR1fZQoaAZoCWgPQwgdHOxNDMnsv5SGlFKUaBVLMmgWR0Cotd2+PBBSdX2UKGgGaAloD0MIN24xPze097+UhpRSlGgVSzJoFkdAqLWJTOxB3XV9lChoBmgJaA9DCDFbsirCjfW/lIaUUpRoFUsyaBZHQKi1GMsH0K91fZQoaAZoCWgPQwgBa9WuCWkMwJSGlFKUaBVLMmgWR0CouFFGoaUBdX2UKGgGaAloD0MIg6J5AIvMFcCUhpRSlGgVSzJoFkdAqLf+G0u14XV9lChoBmgJaA9DCERRoE/kSee/lIaUUpRoFUsyaBZHQKi3qf5k9U11fZQoaAZoCWgPQwjX3qeq0OAOwJSGlFKUaBVLMmgWR0Cotzmmk30gdX2UKGgGaAloD0MIXaW762woEMCUhpRSlGgVSzJoFkdAqLmnRmbsnnV9lChoBmgJaA9DCMOdCyO9aAHAlIaUUpRoFUsyaBZHQKi5UxyGSIR1fZQoaAZoCWgPQwjtYprpXif+v5SGlFKUaBVLMmgWR0CouP3/giu/dX2UKGgGaAloD0MIfm/Tn/0I8b+UhpRSlGgVSzJoFkdAqLiMp3HJcXV9lChoBmgJaA9DCHqPM03Yfu+/lIaUUpRoFUsyaBZHQKi62Ll3hXN1fZQoaAZoCWgPQwhgcw6eCc0PwJSGlFKUaBVLMmgWR0CouoSqMm4RdX2UKGgGaAloD0MIkxywq8nzAcCUhpRSlGgVSzJoFkdAqLovqX4TK3V9lChoBmgJaA9DCLwft18+eQ/AlIaUUpRoFUsyaBZHQKi5vlYEGJN1fZQoaAZoCWgPQwi7l/vkKMD8v5SGlFKUaBVLMmgWR0Cou/y7PIGRdX2UKGgGaAloD0MI9n6jHTdcDcCUhpRSlGgVSzJoFkdAqLuooXsPa3V9lChoBmgJaA9DCAlx5eyd8Q/AlIaUUpRoFUsyaBZHQKi7U1stTUB1fZQoaAZoCWgPQwhz9Pi9Td8AwJSGlFKUaBVLMmgWR0CouuG6wt8NdX2UKGgGaAloD0MINgNckC0L+r+UhpRSlGgVSzJoFkdAqL1F+G47R3V9lChoBmgJaA9DCOF9VS5Ufva/lIaUUpRoFUsyaBZHQKi88d3jdYZ1fZQoaAZoCWgPQwgRNjy9UjYJwJSGlFKUaBVLMmgWR0CovJzKs+3ZdX2UKGgGaAloD0MImus00lKZCMCUhpRSlGgVSzJoFkdAqLwsELYwqXV9lChoBmgJaA9DCGJmn8coHxLAlIaUUpRoFUsyaBZHQKi+hRiPQv91fZQoaAZoCWgPQwisxDwraaUMwJSGlFKUaBVLMmgWR0CovjDi4rjHdX2UKGgGaAloD0MIXqJ6a2DrBcCUhpRSlGgVSzJoFkdAqL3bkKeCkHV9lChoBmgJaA9DCMBatWtCmgHAlIaUUpRoFUsyaBZHQKi9afxMFll1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6416a27550>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f6416a1dc00>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1678203098908340235,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
 
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAabbbPvWdkTze/w0/abbbPvWdkTze/w0/abbbPvWdkTze/w0/abbbPvWdkTze/w0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7k+Nv1SruLtproK+xCbHv7rmhz8p9IG9QM4lvj8ywD8F+9M/SVhzP/0KbD7v6Le9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABptts+9Z2RPN7/DT8uUkk8sRH1OkWS6ztptts+9Z2RPN7/DT8uUkk8sRH1OkWS6ztptts+9Z2RPN7/DT8uUkk8sRH1OkWS6ztptts+9Z2RPN7/DT8uUkk8sRH1OkWS6zuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.42912605 0.01777552 0.5546855 ]\n [0.42912605 0.01777552 0.5546855 ]\n [0.42912605 0.01777552 0.5546855 ]\n [0.42912605 0.01777552 0.5546855 ]]",
60
+ "desired_goal": "[[-1.1040018 -0.00563566 -0.2552369 ]\n [-1.5558705 1.0617287 -0.06345398]\n [-0.1619196 1.5015334 1.656098 ]\n [ 0.9505659 0.23051067 -0.08979975]]",
61
+ "observation": "[[0.42912605 0.01777552 0.5546855 0.01228766 0.00186973 0.00718907]\n [0.42912605 0.01777552 0.5546855 0.01228766 0.00186973 0.00718907]\n [0.42912605 0.01777552 0.5546855 0.01228766 0.00186973 0.00718907]\n [0.42912605 0.01777552 0.5546855 0.01228766 0.00186973 0.00718907]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
 
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOkoUPrlWaD1Gkk4+mG4Svk6VDj5Lb7w8FZtGPKZsqz2hTcQ9S/eqvE8gfD3ylZg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.1448144 0.05672333 0.20172986]\n [-0.143 0.13924143 0.02300229]\n [ 0.01212194 0.08370332 0.09585119]\n [-0.02086987 0.06155425 0.298019 ]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
 
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyhr1EI0u+r+UhpRSlIwBbJRLMowBdJRHQKtdAUaAFxJ1fZQoaAZoCWgPQwg9YYkHlM3+v5SGlFKUaBVLMmgWR0CrXMU5EMLGdX2UKGgGaAloD0MIB++rcqHSAMCUhpRSlGgVSzJoFkdAq1yGSGJvYXV9lChoBmgJaA9DCPGcLSC0vgDAlIaUUpRoFUsyaBZHQKtcSOy3TeB1fZQoaAZoCWgPQwg8UKc8ulHyv5SGlFKUaBVLMmgWR0CrXni2DxsmdX2UKGgGaAloD0MI6UXtfhUg8b+UhpRSlGgVSzJoFkdAq147kU9IPXV9lChoBmgJaA9DCG4yqgzjbui/lIaUUpRoFUsyaBZHQKtd+6d1+y91fZQoaAZoCWgPQwi8lpAPenb8v5SGlFKUaBVLMmgWR0CrXb0zbeuWdX2UKGgGaAloD0MIkkHuIkyR/7+UhpRSlGgVSzJoFkdAq1+z0QK8c3V9lChoBmgJaA9DCAUXK2owjeu/lIaUUpRoFUsyaBZHQKtfdrxiG351fZQoaAZoCWgPQwidEDroEs78v5SGlFKUaBVLMmgWR0CrXzb7TDwZdX2UKGgGaAloD0MIOQ68Wu7M+r+UhpRSlGgVSzJoFkdAq174ixFAmnV9lChoBmgJaA9DCOfCSC9qt/S/lIaUUpRoFUsyaBZHQKtg4m6XjVB1fZQoaAZoCWgPQwgdOdIZGDn2v5SGlFKUaBVLMmgWR0CrYKVi4J/odX2UKGgGaAloD0MIsMivH2KD8r+UhpRSlGgVSzJoFkdAq2BlhXr+pHV9lChoBmgJaA9DCLTKTGn97fe/lIaUUpRoFUsyaBZHQKtgJuxbB451fZQoaAZoCWgPQwjH9e/6zFnuv5SGlFKUaBVLMmgWR0CrYhhGQSzxdX2UKGgGaAloD0MIkiOdgZGX5b+UhpRSlGgVSzJoFkdAq2HbY5DJEHV9lChoBmgJaA9DCLOY2Hxcm+G/lIaUUpRoFUsyaBZHQKthm9bHIZJ1fZQoaAZoCWgPQwjbTfBN08cIwJSGlFKUaBVLMmgWR0CrYV3A/LTydX2UKGgGaAloD0MItr5IaMu5AMCUhpRSlGgVSzJoFkdAq2NRCSidrnV9lChoBmgJaA9DCMpUwaikTte/lIaUUpRoFUsyaBZHQKtjE9QoCuF1fZQoaAZoCWgPQwgeGavN/6v0v5SGlFKUaBVLMmgWR0CrYtPk7wKCdX2UKGgGaAloD0MIvady2lNy/r+UhpRSlGgVSzJoFkdAq2KVlNDc/XV9lChoBmgJaA9DCBKHbCBdLPq/lIaUUpRoFUsyaBZHQKtkiuxrzoV1fZQoaAZoCWgPQwgbvK/KhUrrv5SGlFKUaBVLMmgWR0CrZE3YlIEsdX2UKGgGaAloD0MI2NXkKaup+7+UhpRSlGgVSzJoFkdAq2QN/4Irv3V9lChoBmgJaA9DCC20c5oFGgDAlIaUUpRoFUsyaBZHQKtjz446wMZ1fZQoaAZoCWgPQwhWYwlrYyz6v5SGlFKUaBVLMmgWR0CrZbkHUtqYdX2UKGgGaAloD0MIX2Is0y9R/7+UhpRSlGgVSzJoFkdAq2V7p9qk/XV9lChoBmgJaA9DCNZx/FBphPa/lIaUUpRoFUsyaBZHQKtlO/TLGJh1fZQoaAZoCWgPQwhljXqIRrf/v5SGlFKUaBVLMmgWR0CrZP2njyWidX2UKGgGaAloD0MIYi0+BcD49r+UhpRSlGgVSzJoFkdAq2bu+ueSS3V9lChoBmgJaA9DCKclVkYjvwTAlIaUUpRoFUsyaBZHQKtmscABDG91fZQoaAZoCWgPQwgXm1YKgXwAwJSGlFKUaBVLMmgWR0CrZnKL876pdX2UKGgGaAloD0MIWYejq3R39r+UhpRSlGgVSzJoFkdAq2Y04JeE7HV9lChoBmgJaA9DCDfdskP8A/u/lIaUUpRoFUsyaBZHQKtoFyz5XU91fZQoaAZoCWgPQwj3kPC9v8Hxv5SGlFKUaBVLMmgWR0CrZ9oM8YAKdX2UKGgGaAloD0MIqknwhjQq+r+UhpRSlGgVSzJoFkdAq2eaCg9Ne3V9lChoBmgJaA9DCFRSJ6CJMATAlIaUUpRoFUsyaBZHQKtnW6HTI/91fZQoaAZoCWgPQwjvqDEh5tL/v5SGlFKUaBVLMmgWR0CraXzBAOawdX2UKGgGaAloD0MIFmniHeDJ/b+UhpRSlGgVSzJoFkdAq2lAZ/CqInV9lChoBmgJaA9DCNUGJ6Jf2/K/lIaUUpRoFUsyaBZHQKtpAI2wV0t1fZQoaAZoCWgPQwgrFOl+TqECwJSGlFKUaBVLMmgWR0CraMIppeu3dX2UKGgGaAloD0MIf9sTJLa79r+UhpRSlGgVSzJoFkdAq2rQbfgrH3V9lChoBmgJaA9DCP60UZ0OJPq/lIaUUpRoFUsyaBZHQKtqk13t8eF1fZQoaAZoCWgPQwhiLNMvEa/xv5SGlFKUaBVLMmgWR0CralOfEn9fdX2UKGgGaAloD0MIrOP4odLI+b+UhpRSlGgVSzJoFkdAq2oVh5PdmHV9lChoBmgJaA9DCBvxZDcz+vS/lIaUUpRoFUsyaBZHQKtsG1/lQuV1fZQoaAZoCWgPQwh96lil9Ezpv5SGlFKUaBVLMmgWR0Cra95SNwR5dX2UKGgGaAloD0MIc9pTck4s87+UhpRSlGgVSzJoFkdAq2ueVzIV/XV9lChoBmgJaA9DCNvEyf0OBfS/lIaUUpRoFUsyaBZHQKtrX/nW8RN1fZQoaAZoCWgPQwiHUnsRbUf1v5SGlFKUaBVLMmgWR0CrbUwID5j6dX2UKGgGaAloD0MIZ/FiYYicBsCUhpRSlGgVSzJoFkdAq20OoLofS3V9lChoBmgJaA9DCIRm170Vieq/lIaUUpRoFUsyaBZHQKtszsO5J9R1fZQoaAZoCWgPQwg2kZkLXB7/v5SGlFKUaBVLMmgWR0CrbJBJI1+BdX2UKGgGaAloD0MIsI7jh0rj+r+UhpRSlGgVSzJoFkdAq26CJfpljHV9lChoBmgJaA9DCE2jycUYmPG/lIaUUpRoFUsyaBZHQKtuRRLsa891fZQoaAZoCWgPQwjkSGdg5CUAwJSGlFKUaBVLMmgWR0CrbgUzTF2ndX2UKGgGaAloD0MIwoU8ghup77+UhpRSlGgVSzJoFkdAq23G6K+BYnV9lChoBmgJaA9DCKz9ne3ROwDAlIaUUpRoFUsyaBZHQKtvxbdJrcl1fZQoaAZoCWgPQwj/A6xVuybuv5SGlFKUaBVLMmgWR0Crb4iQkonbdX2UKGgGaAloD0MI56ij42pk9L+UhpRSlGgVSzJoFkdAq29IlUp/gHV9lChoBmgJaA9DCNyCpbqAF+W/lIaUUpRoFUsyaBZHQKtvCk43m3h1fZQoaAZoCWgPQwiB6bRug7oFwJSGlFKUaBVLMmgWR0CrcPXBYV7AdX2UKGgGaAloD0MIvOgrSDNW+b+UhpRSlGgVSzJoFkdAq3C4pazNU3V9lChoBmgJaA9DCHo3FhQGJfa/lIaUUpRoFUsyaBZHQKtweMBIWgx1fZQoaAZoCWgPQwgwgsZMol70v5SGlFKUaBVLMmgWR0CrcDqO938odX2UKGgGaAloD0MIVwkWhzN/8r+UhpRSlGgVSzJoFkdAq3KnZXdTHnV9lChoBmgJaA9DCMQkXMgj+Pe/lIaUUpRoFUsyaBZHQKtyawC8vmJ1fZQoaAZoCWgPQwj3ArNCkW7pv5SGlFKUaBVLMmgWR0CrciyYgJTmdX2UKGgGaAloD0MIxF+TNeoh+b+UhpRSlGgVSzJoFkdAq3Hvhn8KonV9lChoBmgJaA9DCFDIztvYjAHAlIaUUpRoFUsyaBZHQKt0oDIzWPN1fZQoaAZoCWgPQwjsa11qhH7+v5SGlFKUaBVLMmgWR0CrdGQeeWfLdX2UKGgGaAloD0MI8KfGSzcpAMCUhpRSlGgVSzJoFkdAq3QlOsT37HV9lChoBmgJaA9DCMZNDTSfc/G/lIaUUpRoFUsyaBZHQKtz58neBQN1fZQoaAZoCWgPQwgCRwINNnXsv5SGlFKUaBVLMmgWR0Crdpgw482adX2UKGgGaAloD0MIjA+zl20HAcCUhpRSlGgVSzJoFkdAq3ZcFnqVyHV9lChoBmgJaA9DCNL9nIL8bOm/lIaUUpRoFUsyaBZHQKt2HtJnQIF1fZQoaAZoCWgPQwj/P06YMFoCwJSGlFKUaBVLMmgWR0CrdeF54W1udX2UKGgGaAloD0MItVTejnCa87+UhpRSlGgVSzJoFkdAq3ihkRSP2nV9lChoBmgJaA9DCDZ0sz9Qbvu/lIaUUpRoFUsyaBZHQKt4ZYfW+XZ1fZQoaAZoCWgPQwhHHR1XI3v5v5SGlFKUaBVLMmgWR0CreCZdfLLZdX2UKGgGaAloD0MI5nXEIRtI87+UhpRSlGgVSzJoFkdAq3fpPZZjhHV9lChoBmgJaA9DCAFNhA1Pr/e/lIaUUpRoFUsyaBZHQKt6r9lVcUx1fZQoaAZoCWgPQwjkLsIU5ZIHwJSGlFKUaBVLMmgWR0CrenOBlMAWdX2UKGgGaAloD0MIwFlKlpPQ9b+UhpRSlGgVSzJoFkdAq3o0gIQe3nV9lChoBmgJaA9DCEBs6dFUT+y/lIaUUpRoFUsyaBZHQKt590/4Zdh1fZQoaAZoCWgPQwgZVBuciP78v5SGlFKUaBVLMmgWR0CrfLn7HhjwdX2UKGgGaAloD0MIbw1slWAx/7+UhpRSlGgVSzJoFkdAq3x95rxiG3V9lChoBmgJaA9DCEeRtYZSmwLAlIaUUpRoFUsyaBZHQKt8PyCnP3V1fZQoaAZoCWgPQwhlUG1wIjr2v5SGlFKUaBVLMmgWR0CrfAG7BfrsdX2UKGgGaAloD0MInuqQm+HG8r+UhpRSlGgVSzJoFkdAq3317fHgg3V9lChoBmgJaA9DCOT1YFJ8/Pi/lIaUUpRoFUsyaBZHQKt9uNlyzX11fZQoaAZoCWgPQwhxj6UPXdDov5SGlFKUaBVLMmgWR0CrfXkIHC40dX2UKGgGaAloD0MIPxwkRPmC+L+UhpRSlGgVSzJoFkdAq306pHZsbnV9lChoBmgJaA9DCAd96e3PRdi/lIaUUpRoFUsyaBZHQKt/LoduHet1fZQoaAZoCWgPQwiPbRlwltL3v5SGlFKUaBVLMmgWR0CrfvF5GBnSdX2UKGgGaAloD0MIrRbYYyIl7b+UhpRSlGgVSzJoFkdAq36xdY4hlnV9lChoBmgJaA9DCIz4Tsx6cfu/lIaUUpRoFUsyaBZHQKt+cxdIGyJ1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eefb07af97cda4408f1cdc761eb2dcbb6373f9d7d15b21efea5d3ebd4398b87f
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:851ee97225ef0b9560ce092fba8c4aaba5a979c4da03a16bafd051ef7475e6bc
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:70cabf97437a960ab2347945e7c9be937c8e3b179cbef93b7797698fc5c0130b
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e9465e861d4f4793aa4c3f73c6eb2fbf0400a9ccbb1e56fcae2156a76b1d94b
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fdd7c276790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdd7c270a50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677152891528604284, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoiu9PnYukDzbeAM/oiu9PnYukDzbeAM/oiu9PnYukDzbeAM/oiu9PnYukDzbeAM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAadgtPyAW1b+azJs8MdcNP6GalT3Aemq+AD72vewxo7+CJ3s/XrQ4v6fX+b7FVjw8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACiK70+di6QPNt4Az99vjY89odQO5Q2CDqiK70+di6QPNt4Az99vjY89odQO5Q2CDqiK70+di6QPNt4Az99vjY89odQO5Q2CDqiK70+di6QPNt4Az99vjY89odQO5Q2CDqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.36947352 0.01760028 0.51356286]\n [0.36947352 0.01760028 0.51356286]\n [0.36947352 0.01760028 0.51356286]\n [0.36947352 0.01760028 0.51356286]]", "desired_goal": "[[ 0.6790834 -1.6647377 0.01901846]\n [ 0.5540648 0.07304884 -0.22898388]\n [-0.12023544 -1.274961 0.9810716 ]\n [-0.7215022 -0.48797342 0.0114953 ]]", "observation": "[[0.36947352 0.01760028 0.51356286 0.01115381 0.00318193 0.00051961]\n [0.36947352 0.01760028 0.51356286 0.01115381 0.00318193 0.00051961]\n [0.36947352 0.01760028 0.51356286 0.01115381 0.00318193 0.00051961]\n [0.36947352 0.01760028 0.51356286 0.01115381 0.00318193 0.00051961]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlP2BPXDPNL3DKvc8bpO+PcgxxT1zu+89BqGrvT99Er4PezI+ay4mPYNSFz4x5ls+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06347194 -0.04414314 0.03017176]\n [ 0.09305464 0.09628636 0.11705675]\n [-0.08380322 -0.1430559 0.17429756]\n [ 0.04057161 0.1477757 0.2147453 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzxH5LqUuF8CUhpRSlIwBbJRLMowBdJRHQKidjWZqmCR1fZQoaAZoCWgPQwhvnX+77PcSwJSGlFKUaBVLMmgWR0ConTlkhA4XdX2UKGgGaAloD0MIfR8OEqL8EsCUhpRSlGgVSzJoFkdAqJzkKRdQf3V9lChoBmgJaA9DCONSlba4JgbAlIaUUpRoFUsyaBZHQKiccrCm/Fl1fZQoaAZoCWgPQwiy8WCL3S4QwJSGlFKUaBVLMmgWR0Cons6RISUUdX2UKGgGaAloD0MINjrnpzjOAMCUhpRSlGgVSzJoFkdAqJ56ef7Jn3V9lChoBmgJaA9DCEMfLGND1wbAlIaUUpRoFUsyaBZHQKieJWz4UN91fZQoaAZoCWgPQwg4u7VMhqMQwJSGlFKUaBVLMmgWR0ConbQBPsRhdX2UKGgGaAloD0MIp5IBoIobHMCUhpRSlGgVSzJoFkdAqKASCBf8dnV9lChoBmgJaA9DCJbOh2cJ0hjAlIaUUpRoFUsyaBZHQKifvdO6/Zd1fZQoaAZoCWgPQwhoWIy61u4VwJSGlFKUaBVLMmgWR0Con2iItUXIdX2UKGgGaAloD0MIMgIqHEGKCMCUhpRSlGgVSzJoFkdAqJ7240/GEXV9lChoBmgJaA9DCJeRek/lNO+/lIaUUpRoFUsyaBZHQKihQpkPMB91fZQoaAZoCWgPQwjyecVTj1QHwJSGlFKUaBVLMmgWR0CooO5QP7N0dX2UKGgGaAloD0MIxQQ1fAvLFcCUhpRSlGgVSzJoFkdAqKCZBVuJlHV9lChoBmgJaA9DCGfxYmGITBDAlIaUUpRoFUsyaBZHQKigJ12aDwp1fZQoaAZoCWgPQwj36XjMQKUDwJSGlFKUaBVLMmgWR0CoompZfUnYdX2UKGgGaAloD0MI0R4vpMPDCcCUhpRSlGgVSzJoFkdAqKIWKXOW0XV9lChoBmgJaA9DCFezzvi+OBLAlIaUUpRoFUsyaBZHQKihwNsnAqN1fZQoaAZoCWgPQwi8Bn3p7V8XwJSGlFKUaBVLMmgWR0CooU9FnZkDdX2UKGgGaAloD0MIQnv18dBXDMCUhpRSlGgVSzJoFkdAqKOXLV4HHHV9lChoBmgJaA9DCLmoFhHFZALAlIaUUpRoFUsyaBZHQKijQ9JSR8t1fZQoaAZoCWgPQwic+dUcILgRwJSGlFKUaBVLMmgWR0Coou7+98JEdX2UKGgGaAloD0MI+HDJcae0GsCUhpRSlGgVSzJoFkdAqKJ9hJAdGXV9lChoBmgJaA9DCA3fwrrxjgrAlIaUUpRoFUsyaBZHQKikuH446wN1fZQoaAZoCWgPQwiNRj6veCr+v5SGlFKUaBVLMmgWR0CopGRA0KqodX2UKGgGaAloD0MIlL4Qct7fBcCUhpRSlGgVSzJoFkdAqKQOzru6VnV9lChoBmgJaA9DCJombD8ZUxnAlIaUUpRoFUsyaBZHQKijnUyYXwd1fZQoaAZoCWgPQwhh+8kYH2b4v5SGlFKUaBVLMmgWR0CopeBR64UfdX2UKGgGaAloD0MIenB31m7bB8CUhpRSlGgVSzJoFkdAqKWMIHC40HV9lChoBmgJaA9DCHukwW1tcSTAlIaUUpRoFUsyaBZHQKilNriVB2R1fZQoaAZoCWgPQwjHE0Gch3MCwJSGlFKUaBVLMmgWR0CopMUkv9LpdX2UKGgGaAloD0MIS3LAriYP87+UhpRSlGgVSzJoFkdAqKb7h3qzJXV9lChoBmgJaA9DCBwKn62DQwjAlIaUUpRoFUsyaBZHQKimpzXjENx1fZQoaAZoCWgPQwiI9NvXgbMXwJSGlFKUaBVLMmgWR0CoplHfdhy9dX2UKGgGaAloD0MI68N6o1a4BsCUhpRSlGgVSzJoFkdAqKXgNLDhtXV9lChoBmgJaA9DCHVat0HtJxfAlIaUUpRoFUsyaBZHQKioJGGVRk51fZQoaAZoCWgPQwhSf73CgrsMwJSGlFKUaBVLMmgWR0Cop9AMc6vJdX2UKGgGaAloD0MIJ2ppboXwIMCUhpRSlGgVSzJoFkdAqKd6jk+5fHV9lChoBmgJaA9DCMRb598uewXAlIaUUpRoFUsyaBZHQKinCPUaybB1fZQoaAZoCWgPQwjuJvim6XMMwJSGlFKUaBVLMmgWR0CoqUqdQO4HdX2UKGgGaAloD0MIOL2L9+OWC8CUhpRSlGgVSzJoFkdAqKj2maYu03V9lChoBmgJaA9DCI1BJ4QOegDAlIaUUpRoFUsyaBZHQKiooY9gWrR1fZQoaAZoCWgPQwjjVdY2xbMewJSGlFKUaBVLMmgWR0CoqDAFgUlBdX2UKGgGaAloD0MIW9HmOLcpAMCUhpRSlGgVSzJoFkdAqKpwSxqwhXV9lChoBmgJaA9DCJFgqpm1VA/AlIaUUpRoFUsyaBZHQKiqHA0sOG11fZQoaAZoCWgPQwh9I7pnXbMVwJSGlFKUaBVLMmgWR0CoqcakhzNmdX2UKGgGaAloD0MIDoKOVrXUEMCUhpRSlGgVSzJoFkdAqKlU/GEPD3V9lChoBmgJaA9DCMP0vYbgOAzAlIaUUpRoFUsyaBZHQKirkSrYGt91fZQoaAZoCWgPQwj/eoUF98MGwJSGlFKUaBVLMmgWR0CoqzzjNpuddX2UKGgGaAloD0MIeESF6uZiC8CUhpRSlGgVSzJoFkdAqKrnn2ZiNXV9lChoBmgJaA9DCIyeW+hKpBDAlIaUUpRoFUsyaBZHQKiqdgjQiRp1fZQoaAZoCWgPQwjMCkW6n/MRwJSGlFKUaBVLMmgWR0CorLDst03gdX2UKGgGaAloD0MI6rEtA85iEMCUhpRSlGgVSzJoFkdAqKxclRgqmXV9lChoBmgJaA9DCAgcCTTYtAbAlIaUUpRoFUsyaBZHQKisBye7L+x1fZQoaAZoCWgPQwgZNzXQfF4RwJSGlFKUaBVLMmgWR0Coq5WK/EfldX2UKGgGaAloD0MIDeNuEK1VFcCUhpRSlGgVSzJoFkdAqK40yN4qw3V9lChoBmgJaA9DCLQDritmxPe/lIaUUpRoFUsyaBZHQKit4VY6nzh1fZQoaAZoCWgPQwh1lIPZBDgMwJSGlFKUaBVLMmgWR0CorYzoEB8ydX2UKGgGaAloD0MISghW1cvvAMCUhpRSlGgVSzJoFkdAqK0cEzO5a3V9lChoBmgJaA9DCNODglK0UgDAlIaUUpRoFUsyaBZHQKiwD+LFXJZ1fZQoaAZoCWgPQwiuuDgqN9H5v5SGlFKUaBVLMmgWR0Cor7xqGlANdX2UKGgGaAloD0MI/n4xW7Iq97+UhpRSlGgVSzJoFkdAqK9n9itq6HV9lChoBmgJaA9DCC/dJAaB1QrAlIaUUpRoFUsyaBZHQKiu9yXlbNd1fZQoaAZoCWgPQwhsPxnjw2wDwJSGlFKUaBVLMmgWR0Cosfz1K5CodX2UKGgGaAloD0MIWb+ZmC7EBsCUhpRSlGgVSzJoFkdAqLGppcophHV9lChoBmgJaA9DCEKZRpOLoRPAlIaUUpRoFUsyaBZHQKixVTwUg0V1fZQoaAZoCWgPQwgKMZdUbVcLwJSGlFKUaBVLMmgWR0CosORagVXWdX2UKGgGaAloD0MIJ4QOuoRDEMCUhpRSlGgVSzJoFkdAqLQN1p0wJ3V9lChoBmgJaA9DCAvtnGaB1gbAlIaUUpRoFUsyaBZHQKizujxkNF11fZQoaAZoCWgPQwgUs14M5eQJwJSGlFKUaBVLMmgWR0Cos2XRoh6jdX2UKGgGaAloD0MIxCEbSBebDcCUhpRSlGgVSzJoFkdAqLL1iSaEz3V9lChoBmgJaA9DCA1VMZV+ogfAlIaUUpRoFUsyaBZHQKi2MJ/oaDR1fZQoaAZoCWgPQwgdHOxNDMnsv5SGlFKUaBVLMmgWR0Cotd2+PBBSdX2UKGgGaAloD0MIN24xPze097+UhpRSlGgVSzJoFkdAqLWJTOxB3XV9lChoBmgJaA9DCDFbsirCjfW/lIaUUpRoFUsyaBZHQKi1GMsH0K91fZQoaAZoCWgPQwgBa9WuCWkMwJSGlFKUaBVLMmgWR0CouFFGoaUBdX2UKGgGaAloD0MIg6J5AIvMFcCUhpRSlGgVSzJoFkdAqLf+G0u14XV9lChoBmgJaA9DCERRoE/kSee/lIaUUpRoFUsyaBZHQKi3qf5k9U11fZQoaAZoCWgPQwjX3qeq0OAOwJSGlFKUaBVLMmgWR0Cotzmmk30gdX2UKGgGaAloD0MIXaW762woEMCUhpRSlGgVSzJoFkdAqLmnRmbsnnV9lChoBmgJaA9DCMOdCyO9aAHAlIaUUpRoFUsyaBZHQKi5UxyGSIR1fZQoaAZoCWgPQwjtYprpXif+v5SGlFKUaBVLMmgWR0CouP3/giu/dX2UKGgGaAloD0MIfm/Tn/0I8b+UhpRSlGgVSzJoFkdAqLiMp3HJcXV9lChoBmgJaA9DCHqPM03Yfu+/lIaUUpRoFUsyaBZHQKi62Ll3hXN1fZQoaAZoCWgPQwhgcw6eCc0PwJSGlFKUaBVLMmgWR0CouoSqMm4RdX2UKGgGaAloD0MIkxywq8nzAcCUhpRSlGgVSzJoFkdAqLovqX4TK3V9lChoBmgJaA9DCLwft18+eQ/AlIaUUpRoFUsyaBZHQKi5vlYEGJN1fZQoaAZoCWgPQwi7l/vkKMD8v5SGlFKUaBVLMmgWR0Cou/y7PIGRdX2UKGgGaAloD0MI9n6jHTdcDcCUhpRSlGgVSzJoFkdAqLuooXsPa3V9lChoBmgJaA9DCAlx5eyd8Q/AlIaUUpRoFUsyaBZHQKi7U1stTUB1fZQoaAZoCWgPQwhz9Pi9Td8AwJSGlFKUaBVLMmgWR0CouuG6wt8NdX2UKGgGaAloD0MINgNckC0L+r+UhpRSlGgVSzJoFkdAqL1F+G47R3V9lChoBmgJaA9DCOF9VS5Ufva/lIaUUpRoFUsyaBZHQKi88d3jdYZ1fZQoaAZoCWgPQwgRNjy9UjYJwJSGlFKUaBVLMmgWR0CovJzKs+3ZdX2UKGgGaAloD0MImus00lKZCMCUhpRSlGgVSzJoFkdAqLwsELYwqXV9lChoBmgJaA9DCGJmn8coHxLAlIaUUpRoFUsyaBZHQKi+hRiPQv91fZQoaAZoCWgPQwisxDwraaUMwJSGlFKUaBVLMmgWR0CovjDi4rjHdX2UKGgGaAloD0MIXqJ6a2DrBcCUhpRSlGgVSzJoFkdAqL3bkKeCkHV9lChoBmgJaA9DCMBatWtCmgHAlIaUUpRoFUsyaBZHQKi9afxMFll1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6416a27550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6416a1dc00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678203098908340235, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAabbbPvWdkTze/w0/abbbPvWdkTze/w0/abbbPvWdkTze/w0/abbbPvWdkTze/w0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7k+Nv1SruLtproK+xCbHv7rmhz8p9IG9QM4lvj8ywD8F+9M/SVhzP/0KbD7v6Le9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABptts+9Z2RPN7/DT8uUkk8sRH1OkWS6ztptts+9Z2RPN7/DT8uUkk8sRH1OkWS6ztptts+9Z2RPN7/DT8uUkk8sRH1OkWS6ztptts+9Z2RPN7/DT8uUkk8sRH1OkWS6zuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42912605 0.01777552 0.5546855 ]\n [0.42912605 0.01777552 0.5546855 ]\n [0.42912605 0.01777552 0.5546855 ]\n [0.42912605 0.01777552 0.5546855 ]]", "desired_goal": "[[-1.1040018 -0.00563566 -0.2552369 ]\n [-1.5558705 1.0617287 -0.06345398]\n [-0.1619196 1.5015334 1.656098 ]\n [ 0.9505659 0.23051067 -0.08979975]]", "observation": "[[0.42912605 0.01777552 0.5546855 0.01228766 0.00186973 0.00718907]\n [0.42912605 0.01777552 0.5546855 0.01228766 0.00186973 0.00718907]\n [0.42912605 0.01777552 0.5546855 0.01228766 0.00186973 0.00718907]\n [0.42912605 0.01777552 0.5546855 0.01228766 0.00186973 0.00718907]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOkoUPrlWaD1Gkk4+mG4Svk6VDj5Lb7w8FZtGPKZsqz2hTcQ9S/eqvE8gfD3ylZg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.1448144 0.05672333 0.20172986]\n [-0.143 0.13924143 0.02300229]\n [ 0.01212194 0.08370332 0.09585119]\n [-0.02086987 0.06155425 0.298019 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyhr1EI0u+r+UhpRSlIwBbJRLMowBdJRHQKtdAUaAFxJ1fZQoaAZoCWgPQwg9YYkHlM3+v5SGlFKUaBVLMmgWR0CrXMU5EMLGdX2UKGgGaAloD0MIB++rcqHSAMCUhpRSlGgVSzJoFkdAq1yGSGJvYXV9lChoBmgJaA9DCPGcLSC0vgDAlIaUUpRoFUsyaBZHQKtcSOy3TeB1fZQoaAZoCWgPQwg8UKc8ulHyv5SGlFKUaBVLMmgWR0CrXni2DxsmdX2UKGgGaAloD0MI6UXtfhUg8b+UhpRSlGgVSzJoFkdAq147kU9IPXV9lChoBmgJaA9DCG4yqgzjbui/lIaUUpRoFUsyaBZHQKtd+6d1+y91fZQoaAZoCWgPQwi8lpAPenb8v5SGlFKUaBVLMmgWR0CrXb0zbeuWdX2UKGgGaAloD0MIkkHuIkyR/7+UhpRSlGgVSzJoFkdAq1+z0QK8c3V9lChoBmgJaA9DCAUXK2owjeu/lIaUUpRoFUsyaBZHQKtfdrxiG351fZQoaAZoCWgPQwidEDroEs78v5SGlFKUaBVLMmgWR0CrXzb7TDwZdX2UKGgGaAloD0MIOQ68Wu7M+r+UhpRSlGgVSzJoFkdAq174ixFAmnV9lChoBmgJaA9DCOfCSC9qt/S/lIaUUpRoFUsyaBZHQKtg4m6XjVB1fZQoaAZoCWgPQwgdOdIZGDn2v5SGlFKUaBVLMmgWR0CrYKVi4J/odX2UKGgGaAloD0MIsMivH2KD8r+UhpRSlGgVSzJoFkdAq2BlhXr+pHV9lChoBmgJaA9DCLTKTGn97fe/lIaUUpRoFUsyaBZHQKtgJuxbB451fZQoaAZoCWgPQwjH9e/6zFnuv5SGlFKUaBVLMmgWR0CrYhhGQSzxdX2UKGgGaAloD0MIkiOdgZGX5b+UhpRSlGgVSzJoFkdAq2HbY5DJEHV9lChoBmgJaA9DCLOY2Hxcm+G/lIaUUpRoFUsyaBZHQKthm9bHIZJ1fZQoaAZoCWgPQwjbTfBN08cIwJSGlFKUaBVLMmgWR0CrYV3A/LTydX2UKGgGaAloD0MItr5IaMu5AMCUhpRSlGgVSzJoFkdAq2NRCSidrnV9lChoBmgJaA9DCMpUwaikTte/lIaUUpRoFUsyaBZHQKtjE9QoCuF1fZQoaAZoCWgPQwgeGavN/6v0v5SGlFKUaBVLMmgWR0CrYtPk7wKCdX2UKGgGaAloD0MIvady2lNy/r+UhpRSlGgVSzJoFkdAq2KVlNDc/XV9lChoBmgJaA9DCBKHbCBdLPq/lIaUUpRoFUsyaBZHQKtkiuxrzoV1fZQoaAZoCWgPQwgbvK/KhUrrv5SGlFKUaBVLMmgWR0CrZE3YlIEsdX2UKGgGaAloD0MI2NXkKaup+7+UhpRSlGgVSzJoFkdAq2QN/4Irv3V9lChoBmgJaA9DCC20c5oFGgDAlIaUUpRoFUsyaBZHQKtjz446wMZ1fZQoaAZoCWgPQwhWYwlrYyz6v5SGlFKUaBVLMmgWR0CrZbkHUtqYdX2UKGgGaAloD0MIX2Is0y9R/7+UhpRSlGgVSzJoFkdAq2V7p9qk/XV9lChoBmgJaA9DCNZx/FBphPa/lIaUUpRoFUsyaBZHQKtlO/TLGJh1fZQoaAZoCWgPQwhljXqIRrf/v5SGlFKUaBVLMmgWR0CrZP2njyWidX2UKGgGaAloD0MIYi0+BcD49r+UhpRSlGgVSzJoFkdAq2bu+ueSS3V9lChoBmgJaA9DCKclVkYjvwTAlIaUUpRoFUsyaBZHQKtmscABDG91fZQoaAZoCWgPQwgXm1YKgXwAwJSGlFKUaBVLMmgWR0CrZnKL876pdX2UKGgGaAloD0MIWYejq3R39r+UhpRSlGgVSzJoFkdAq2Y04JeE7HV9lChoBmgJaA9DCDfdskP8A/u/lIaUUpRoFUsyaBZHQKtoFyz5XU91fZQoaAZoCWgPQwj3kPC9v8Hxv5SGlFKUaBVLMmgWR0CrZ9oM8YAKdX2UKGgGaAloD0MIqknwhjQq+r+UhpRSlGgVSzJoFkdAq2eaCg9Ne3V9lChoBmgJaA9DCFRSJ6CJMATAlIaUUpRoFUsyaBZHQKtnW6HTI/91fZQoaAZoCWgPQwjvqDEh5tL/v5SGlFKUaBVLMmgWR0CraXzBAOawdX2UKGgGaAloD0MIFmniHeDJ/b+UhpRSlGgVSzJoFkdAq2lAZ/CqInV9lChoBmgJaA9DCNUGJ6Jf2/K/lIaUUpRoFUsyaBZHQKtpAI2wV0t1fZQoaAZoCWgPQwgrFOl+TqECwJSGlFKUaBVLMmgWR0CraMIppeu3dX2UKGgGaAloD0MIf9sTJLa79r+UhpRSlGgVSzJoFkdAq2rQbfgrH3V9lChoBmgJaA9DCP60UZ0OJPq/lIaUUpRoFUsyaBZHQKtqk13t8eF1fZQoaAZoCWgPQwhiLNMvEa/xv5SGlFKUaBVLMmgWR0CralOfEn9fdX2UKGgGaAloD0MIrOP4odLI+b+UhpRSlGgVSzJoFkdAq2oVh5PdmHV9lChoBmgJaA9DCBvxZDcz+vS/lIaUUpRoFUsyaBZHQKtsG1/lQuV1fZQoaAZoCWgPQwh96lil9Ezpv5SGlFKUaBVLMmgWR0Cra95SNwR5dX2UKGgGaAloD0MIc9pTck4s87+UhpRSlGgVSzJoFkdAq2ueVzIV/XV9lChoBmgJaA9DCNvEyf0OBfS/lIaUUpRoFUsyaBZHQKtrX/nW8RN1fZQoaAZoCWgPQwiHUnsRbUf1v5SGlFKUaBVLMmgWR0CrbUwID5j6dX2UKGgGaAloD0MIZ/FiYYicBsCUhpRSlGgVSzJoFkdAq20OoLofS3V9lChoBmgJaA9DCIRm170Vieq/lIaUUpRoFUsyaBZHQKtszsO5J9R1fZQoaAZoCWgPQwg2kZkLXB7/v5SGlFKUaBVLMmgWR0CrbJBJI1+BdX2UKGgGaAloD0MIsI7jh0rj+r+UhpRSlGgVSzJoFkdAq26CJfpljHV9lChoBmgJaA9DCE2jycUYmPG/lIaUUpRoFUsyaBZHQKtuRRLsa891fZQoaAZoCWgPQwjkSGdg5CUAwJSGlFKUaBVLMmgWR0CrbgUzTF2ndX2UKGgGaAloD0MIwoU8ghup77+UhpRSlGgVSzJoFkdAq23G6K+BYnV9lChoBmgJaA9DCKz9ne3ROwDAlIaUUpRoFUsyaBZHQKtvxbdJrcl1fZQoaAZoCWgPQwj/A6xVuybuv5SGlFKUaBVLMmgWR0Crb4iQkonbdX2UKGgGaAloD0MI56ij42pk9L+UhpRSlGgVSzJoFkdAq29IlUp/gHV9lChoBmgJaA9DCNyCpbqAF+W/lIaUUpRoFUsyaBZHQKtvCk43m3h1fZQoaAZoCWgPQwiB6bRug7oFwJSGlFKUaBVLMmgWR0CrcPXBYV7AdX2UKGgGaAloD0MIvOgrSDNW+b+UhpRSlGgVSzJoFkdAq3C4pazNU3V9lChoBmgJaA9DCHo3FhQGJfa/lIaUUpRoFUsyaBZHQKtweMBIWgx1fZQoaAZoCWgPQwgwgsZMol70v5SGlFKUaBVLMmgWR0CrcDqO938odX2UKGgGaAloD0MIVwkWhzN/8r+UhpRSlGgVSzJoFkdAq3KnZXdTHnV9lChoBmgJaA9DCMQkXMgj+Pe/lIaUUpRoFUsyaBZHQKtyawC8vmJ1fZQoaAZoCWgPQwj3ArNCkW7pv5SGlFKUaBVLMmgWR0CrciyYgJTmdX2UKGgGaAloD0MIxF+TNeoh+b+UhpRSlGgVSzJoFkdAq3Hvhn8KonV9lChoBmgJaA9DCFDIztvYjAHAlIaUUpRoFUsyaBZHQKt0oDIzWPN1fZQoaAZoCWgPQwjsa11qhH7+v5SGlFKUaBVLMmgWR0CrdGQeeWfLdX2UKGgGaAloD0MI8KfGSzcpAMCUhpRSlGgVSzJoFkdAq3QlOsT37HV9lChoBmgJaA9DCMZNDTSfc/G/lIaUUpRoFUsyaBZHQKtz58neBQN1fZQoaAZoCWgPQwgCRwINNnXsv5SGlFKUaBVLMmgWR0Crdpgw482adX2UKGgGaAloD0MIjA+zl20HAcCUhpRSlGgVSzJoFkdAq3ZcFnqVyHV9lChoBmgJaA9DCNL9nIL8bOm/lIaUUpRoFUsyaBZHQKt2HtJnQIF1fZQoaAZoCWgPQwj/P06YMFoCwJSGlFKUaBVLMmgWR0CrdeF54W1udX2UKGgGaAloD0MItVTejnCa87+UhpRSlGgVSzJoFkdAq3ihkRSP2nV9lChoBmgJaA9DCDZ0sz9Qbvu/lIaUUpRoFUsyaBZHQKt4ZYfW+XZ1fZQoaAZoCWgPQwhHHR1XI3v5v5SGlFKUaBVLMmgWR0CreCZdfLLZdX2UKGgGaAloD0MI5nXEIRtI87+UhpRSlGgVSzJoFkdAq3fpPZZjhHV9lChoBmgJaA9DCAFNhA1Pr/e/lIaUUpRoFUsyaBZHQKt6r9lVcUx1fZQoaAZoCWgPQwjkLsIU5ZIHwJSGlFKUaBVLMmgWR0CrenOBlMAWdX2UKGgGaAloD0MIwFlKlpPQ9b+UhpRSlGgVSzJoFkdAq3o0gIQe3nV9lChoBmgJaA9DCEBs6dFUT+y/lIaUUpRoFUsyaBZHQKt590/4Zdh1fZQoaAZoCWgPQwgZVBuciP78v5SGlFKUaBVLMmgWR0CrfLn7HhjwdX2UKGgGaAloD0MIbw1slWAx/7+UhpRSlGgVSzJoFkdAq3x95rxiG3V9lChoBmgJaA9DCEeRtYZSmwLAlIaUUpRoFUsyaBZHQKt8PyCnP3V1fZQoaAZoCWgPQwhlUG1wIjr2v5SGlFKUaBVLMmgWR0CrfAG7BfrsdX2UKGgGaAloD0MInuqQm+HG8r+UhpRSlGgVSzJoFkdAq3317fHgg3V9lChoBmgJaA9DCOT1YFJ8/Pi/lIaUUpRoFUsyaBZHQKt9uNlyzX11fZQoaAZoCWgPQwhxj6UPXdDov5SGlFKUaBVLMmgWR0CrfXkIHC40dX2UKGgGaAloD0MIPxwkRPmC+L+UhpRSlGgVSzJoFkdAq306pHZsbnV9lChoBmgJaA9DCAd96e3PRdi/lIaUUpRoFUsyaBZHQKt/LoduHet1fZQoaAZoCWgPQwiPbRlwltL3v5SGlFKUaBVLMmgWR0CrfvF5GBnSdX2UKGgGaAloD0MIrRbYYyIl7b+UhpRSlGgVSzJoFkdAq36xdY4hlnV9lChoBmgJaA9DCIz4Tsx6cfu/lIaUUpRoFUsyaBZHQKt+cxdIGyJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -2.557246174896136, "std_reward": 1.0324173021355831, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-23T12:41:16.251474"}
 
1
+ {"mean_reward": -1.4793139781570062, "std_reward": 0.6944886979794684, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-07T16:44:48.847520"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ddf0d93ecab7b15104b19922e9b7faa2153bf0619c8706aa161605c678d7b294
3
  size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18b4fc322584241bd4fdc101b9da4197fa1b31e17bafb12b5303f9f30f2d6ce3
3
  size 3056