File size: 3,003 Bytes
aae0f9f 8a252cd aae0f9f a6daa8c aae0f9f 093a83c aae0f9f 093a83c a6daa8c 093a83c aae0f9f 8a252cd aae0f9f 093a83c aae0f9f 093a83c aae0f9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: mistral7binstruct_summarize
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral7binstruct_summarize
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6323
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 0.03
- training_steps: 150
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.5172 | 0.02 | 5 | 2.3926 |
| 2.2822 | 0.04 | 10 | 2.1537 |
| 2.1109 | 0.06 | 15 | 2.0087 |
| 1.8571 | 0.08 | 20 | 1.9020 |
| 1.8964 | 0.11 | 25 | 1.8310 |
| 1.7335 | 0.13 | 30 | 1.7901 |
| 1.7744 | 0.15 | 35 | 1.7607 |
| 1.8654 | 0.17 | 40 | 1.7396 |
| 1.7379 | 0.19 | 45 | 1.7235 |
| 1.7442 | 0.21 | 50 | 1.7113 |
| 1.6483 | 0.23 | 55 | 1.7011 |
| 1.7006 | 0.25 | 60 | 1.6919 |
| 1.6783 | 0.28 | 65 | 1.6833 |
| 1.6468 | 0.3 | 70 | 1.6754 |
| 1.6116 | 0.32 | 75 | 1.6678 |
| 1.5899 | 0.34 | 80 | 1.6605 |
| 1.7426 | 0.36 | 85 | 1.6538 |
| 1.7244 | 0.38 | 90 | 1.6491 |
| 1.6652 | 0.4 | 95 | 1.6457 |
| 1.7859 | 0.42 | 100 | 1.6422 |
| 1.5836 | 0.44 | 105 | 1.6395 |
| 1.6265 | 0.47 | 110 | 1.6374 |
| 1.5187 | 0.49 | 115 | 1.6358 |
| 1.5989 | 0.51 | 120 | 1.6345 |
| 1.684 | 0.53 | 125 | 1.6336 |
| 1.6257 | 0.55 | 130 | 1.6329 |
| 1.7211 | 0.57 | 135 | 1.6325 |
| 1.6235 | 0.59 | 140 | 1.6324 |
| 1.5885 | 0.61 | 145 | 1.6323 |
| 1.5885 | 0.64 | 150 | 1.6323 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |