File size: 10,006 Bytes
6181626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: She picks up a wine glass and takes a drink. She
- text: Someone smiles as she looks out her window. Their car
- text: Someone turns and her jaw drops at the site of the other woman. Moving in
    slow motion, someone
- text: He sneers and winds up with his fist. Someone
- text: He smooths it back with his hand. Finally, appearing confident and relaxed
    and with the old familiar glint in his eyes, someone
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.16538461538461538
      name: Accuracy
---

# SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 9 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                    |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8     | <ul><li>'Later she meets someone at the bar. He'</li><li>'He heads to them and sits. The bus'</li><li>'Someone leaps to his feet and punches the agent in the face. Seemingly unaffected, the agent'</li></ul>                                                              |
| 2     | <ul><li>'A man sits behind a desk. Two people'</li><li>'A man is seen standing at the bottom of a hole while a man records him. Two men'</li><li>'Someone questions his female colleague who shrugs. Through a window, we'</li></ul>                                        |
| 0     | <ul><li>'A woman bends down and puts something on a scale. She then'</li><li>'He pulls down the blind. He'</li><li>'Someone flings his hands forward. The someone fires, but the water'</li></ul>                                                                           |
| 6     | <ul><li>'People are sitting down on chairs. They'</li><li>'They look up at stained glass skylights. The Americans'</li><li>'The lady and the man dance around each other in a circle. The people'</li></ul>                                                                 |
| 1     | <ul><li>'An older gentleman kisses her. As he leads her off, someone'</li><li>'The first girl comes back and does it effortlessly as the second girl still struggles. For the last round, the girl'</li><li>'As she leaves, the bartender smiles. Now the blonde'</li></ul> |
| 3     | <ul><li>'Someone lowers his demoralized gaze. Someone'</li><li>'Someone goes into his bedroom. Someone'</li><li>'As someone leaves, someone spots him on the monitor. Someone'</li></ul>                                                                                    |
| 7     | <ul><li>'Four inches of Plexiglas separate the two and they talk on monitored phones. Someone'</li><li>'The American and Russian commanders each watch them returning. As someone'</li><li>'A group of walkers walk along the sidewalk near the lake. A man'</li></ul>      |
| 4     | <ul><li>'The secretary flexes the foot of her crossed - leg as she eyes someone. The woman'</li><li>'A man in a white striped shirt is smiling. A woman'</li><li>'He grabs her hair and pulls her head back. She'</li></ul>                                                 |
| 5     | <ul><li>'He heads out of the plaza. Someone'</li><li>"As he starts back, he sees someone's scared look just before he slams the door shut. Someone"</li><li>'He nods at her beaming. Someone'</li></ul>                                                                     |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.1654   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("HelgeKn/Swag-multi-class-20")
# Run inference
preds = model("He sneers and winds up with his fist. Someone")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 5   | 12.1056 | 33  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 20                    |
| 1     | 20                    |
| 2     | 20                    |
| 3     | 20                    |
| 4     | 20                    |
| 5     | 20                    |
| 6     | 20                    |
| 7     | 20                    |
| 8     | 20                    |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0022 | 1    | 0.3747        | -               |
| 0.1111 | 50   | 0.2052        | -               |
| 0.2222 | 100  | 0.1878        | -               |
| 0.3333 | 150  | 0.1126        | -               |
| 0.4444 | 200  | 0.1862        | -               |
| 0.5556 | 250  | 0.1385        | -               |
| 0.6667 | 300  | 0.0154        | -               |
| 0.7778 | 350  | 0.0735        | -               |
| 0.8889 | 400  | 0.0313        | -               |
| 1.0    | 450  | 0.0189        | -               |
| 1.1111 | 500  | 0.0138        | -               |
| 1.2222 | 550  | 0.0046        | -               |
| 1.3333 | 600  | 0.0043        | -               |
| 1.4444 | 650  | 0.0021        | -               |
| 1.5556 | 700  | 0.0033        | -               |
| 1.6667 | 750  | 0.001         | -               |
| 1.7778 | 800  | 0.0026        | -               |
| 1.8889 | 850  | 0.0022        | -               |
| 2.0    | 900  | 0.0014        | -               |

### Framework Versions
- Python: 3.9.13
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.36.0
- PyTorch: 2.1.1+cpu
- Datasets: 2.15.0
- Tokenizers: 0.15.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->