File size: 23,806 Bytes
579fe1b
 
a5fbed6
579fe1b
 
 
a5fbed6
579fe1b
 
 
 
a5fbed6
579fe1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5fbed6
 
 
579fe1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5fbed6
579fe1b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
---
language:
- ca
- da
- es
- fr
- gl
- is
- it
- nb
- pt
- ro
- sv

tags:
- translation
- opus-mt-tc

license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-gmq-itc
  results:
  - task:
      name: Translation dan-cat
      type: translation
      args: dan-cat
    dataset:
      name: flores101-devtest
      type: flores_101
      args: dan cat devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 33.4
       - name: chr-F
         type: chrf
         value: 0.59224
  - task:
      name: Translation dan-fra
      type: translation
      args: dan-fra
    dataset:
      name: flores101-devtest
      type: flores_101
      args: dan fra devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 38.3
       - name: chr-F
         type: chrf
         value: 0.63387
  - task:
      name: Translation dan-glg
      type: translation
      args: dan-glg
    dataset:
      name: flores101-devtest
      type: flores_101
      args: dan glg devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 26.4
       - name: chr-F
         type: chrf
         value: 0.54446
  - task:
      name: Translation dan-ita
      type: translation
      args: dan-ita
    dataset:
      name: flores101-devtest
      type: flores_101
      args: dan ita devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 25.7
       - name: chr-F
         type: chrf
         value: 0.55237
  - task:
      name: Translation dan-por
      type: translation
      args: dan-por
    dataset:
      name: flores101-devtest
      type: flores_101
      args: dan por devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 36.9
       - name: chr-F
         type: chrf
         value: 0.62233
  - task:
      name: Translation dan-ron
      type: translation
      args: dan-ron
    dataset:
      name: flores101-devtest
      type: flores_101
      args: dan ron devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 31.8
       - name: chr-F
         type: chrf
         value: 0.58235
  - task:
      name: Translation dan-spa
      type: translation
      args: dan-spa
    dataset:
      name: flores101-devtest
      type: flores_101
      args: dan spa devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 24.3
       - name: chr-F
         type: chrf
         value: 0.52453
  - task:
      name: Translation isl-cat
      type: translation
      args: isl-cat
    dataset:
      name: flores101-devtest
      type: flores_101
      args: isl cat devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 22.7
       - name: chr-F
         type: chrf
         value: 0.48930
  - task:
      name: Translation isl-fra
      type: translation
      args: isl-fra
    dataset:
      name: flores101-devtest
      type: flores_101
      args: isl fra devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 26.2
       - name: chr-F
         type: chrf
         value: 0.52704
  - task:
      name: Translation isl-glg
      type: translation
      args: isl-glg
    dataset:
      name: flores101-devtest
      type: flores_101
      args: isl glg devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 18.0
       - name: chr-F
         type: chrf
         value: 0.45387
  - task:
      name: Translation isl-ita
      type: translation
      args: isl-ita
    dataset:
      name: flores101-devtest
      type: flores_101
      args: isl ita devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 18.6
       - name: chr-F
         type: chrf
         value: 0.47303
  - task:
      name: Translation isl-por
      type: translation
      args: isl-por
    dataset:
      name: flores101-devtest
      type: flores_101
      args: isl por devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 24.9
       - name: chr-F
         type: chrf
         value: 0.51381
  - task:
      name: Translation isl-ron
      type: translation
      args: isl-ron
    dataset:
      name: flores101-devtest
      type: flores_101
      args: isl ron devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 21.6
       - name: chr-F
         type: chrf
         value: 0.48224
  - task:
      name: Translation isl-spa
      type: translation
      args: isl-spa
    dataset:
      name: flores101-devtest
      type: flores_101
      args: isl spa devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 18.1
       - name: chr-F
         type: chrf
         value: 0.45786
  - task:
      name: Translation nob-cat
      type: translation
      args: nob-cat
    dataset:
      name: flores101-devtest
      type: flores_101
      args: nob cat devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 28.9
       - name: chr-F
         type: chrf
         value: 0.55984
  - task:
      name: Translation nob-fra
      type: translation
      args: nob-fra
    dataset:
      name: flores101-devtest
      type: flores_101
      args: nob fra devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 33.8
       - name: chr-F
         type: chrf
         value: 0.60102
  - task:
      name: Translation nob-glg
      type: translation
      args: nob-glg
    dataset:
      name: flores101-devtest
      type: flores_101
      args: nob glg devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 23.4
       - name: chr-F
         type: chrf
         value: 0.52145
  - task:
      name: Translation nob-ita
      type: translation
      args: nob-ita
    dataset:
      name: flores101-devtest
      type: flores_101
      args: nob ita devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 22.2
       - name: chr-F
         type: chrf
         value: 0.52619
  - task:
      name: Translation nob-por
      type: translation
      args: nob-por
    dataset:
      name: flores101-devtest
      type: flores_101
      args: nob por devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 32.2
       - name: chr-F
         type: chrf
         value: 0.58836
  - task:
      name: Translation nob-ron
      type: translation
      args: nob-ron
    dataset:
      name: flores101-devtest
      type: flores_101
      args: nob ron devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 27.6
       - name: chr-F
         type: chrf
         value: 0.54845
  - task:
      name: Translation nob-spa
      type: translation
      args: nob-spa
    dataset:
      name: flores101-devtest
      type: flores_101
      args: nob spa devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 21.8
       - name: chr-F
         type: chrf
         value: 0.50661
  - task:
      name: Translation swe-cat
      type: translation
      args: swe-cat
    dataset:
      name: flores101-devtest
      type: flores_101
      args: swe cat devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 32.4
       - name: chr-F
         type: chrf
         value: 0.58542
  - task:
      name: Translation swe-fra
      type: translation
      args: swe-fra
    dataset:
      name: flores101-devtest
      type: flores_101
      args: swe fra devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 39.3
       - name: chr-F
         type: chrf
         value: 0.63688
  - task:
      name: Translation swe-glg
      type: translation
      args: swe-glg
    dataset:
      name: flores101-devtest
      type: flores_101
      args: swe glg devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 26.0
       - name: chr-F
         type: chrf
         value: 0.53989
  - task:
      name: Translation swe-ita
      type: translation
      args: swe-ita
    dataset:
      name: flores101-devtest
      type: flores_101
      args: swe ita devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 25.9
       - name: chr-F
         type: chrf
         value: 0.55232
  - task:
      name: Translation swe-por
      type: translation
      args: swe-por
    dataset:
      name: flores101-devtest
      type: flores_101
      args: swe por devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 36.5
       - name: chr-F
         type: chrf
         value: 0.61882
  - task:
      name: Translation swe-ron
      type: translation
      args: swe-ron
    dataset:
      name: flores101-devtest
      type: flores_101
      args: swe ron devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 31.0
       - name: chr-F
         type: chrf
         value: 0.57419
  - task:
      name: Translation swe-spa
      type: translation
      args: swe-spa
    dataset:
      name: flores101-devtest
      type: flores_101
      args: swe spa devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 23.8
       - name: chr-F
         type: chrf
         value: 0.52175
  - task:
      name: Translation dan-fra
      type: translation
      args: dan-fra
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: dan-fra
    metrics:
       - name: BLEU
         type: bleu
         value: 63.8
       - name: chr-F
         type: chrf
         value: 0.76671
  - task:
      name: Translation dan-ita
      type: translation
      args: dan-ita
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: dan-ita
    metrics:
       - name: BLEU
         type: bleu
         value: 56.2
       - name: chr-F
         type: chrf
         value: 0.74658
  - task:
      name: Translation dan-por
      type: translation
      args: dan-por
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: dan-por
    metrics:
       - name: BLEU
         type: bleu
         value: 57.8
       - name: chr-F
         type: chrf
         value: 0.74944
  - task:
      name: Translation dan-spa
      type: translation
      args: dan-spa
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: dan-spa
    metrics:
       - name: BLEU
         type: bleu
         value: 54.8
       - name: chr-F
         type: chrf
         value: 0.72328
  - task:
      name: Translation isl-ita
      type: translation
      args: isl-ita
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: isl-ita
    metrics:
       - name: BLEU
         type: bleu
         value: 51.0
       - name: chr-F
         type: chrf
         value: 0.69354
  - task:
      name: Translation isl-spa
      type: translation
      args: isl-spa
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: isl-spa
    metrics:
       - name: BLEU
         type: bleu
         value: 49.2
       - name: chr-F
         type: chrf
         value: 0.66008
  - task:
      name: Translation nob-fra
      type: translation
      args: nob-fra
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: nob-fra
    metrics:
       - name: BLEU
         type: bleu
         value: 54.4
       - name: chr-F
         type: chrf
         value: 0.70854
  - task:
      name: Translation nob-spa
      type: translation
      args: nob-spa
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: nob-spa
    metrics:
       - name: BLEU
         type: bleu
         value: 55.9
       - name: chr-F
         type: chrf
         value: 0.73672
  - task:
      name: Translation swe-fra
      type: translation
      args: swe-fra
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: swe-fra
    metrics:
       - name: BLEU
         type: bleu
         value: 59.2
       - name: chr-F
         type: chrf
         value: 0.73014
  - task:
      name: Translation swe-ita
      type: translation
      args: swe-ita
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: swe-ita
    metrics:
       - name: BLEU
         type: bleu
         value: 56.6
       - name: chr-F
         type: chrf
         value: 0.73211
  - task:
      name: Translation swe-por
      type: translation
      args: swe-por
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: swe-por
    metrics:
       - name: BLEU
         type: bleu
         value: 48.7
       - name: chr-F
         type: chrf
         value: 0.68146
  - task:
      name: Translation swe-spa
      type: translation
      args: swe-spa
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: swe-spa
    metrics:
       - name: BLEU
         type: bleu
         value: 55.3
       - name: chr-F
         type: chrf
         value: 0.71373
---
# opus-mt-tc-big-gmq-itc

## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation Information](#citation-information)
- [Acknowledgements](#acknowledgements)

## Model Details

Neural machine translation model for translating from North Germanic languages (gmq) to Italic languages (itc).

This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
**Model Description:**
- **Developed by:** Language Technology Research Group at the University of Helsinki
- **Model Type:** Translation (transformer-big)
- **Release**: 2022-08-09
- **License:** CC-BY-4.0
- **Language(s):**  
  - Source Language(s): dan isl nno nob nor swe
  - Target Language(s): cat fra glg ita lat por ron spa
  - Language Pair(s): dan-cat dan-fra dan-glg dan-ita dan-por dan-ron dan-spa isl-cat isl-fra isl-ita isl-por isl-ron isl-spa nob-cat nob-fra nob-glg nob-ita nob-por nob-ron nob-spa swe-cat swe-fra swe-glg swe-ita swe-por swe-ron swe-spa
  - Valid Target Language Labels: >>acf<< >>aoa<< >>arg<< >>ast<< >>cat<< >>cbk<< >>ccd<< >>cks<< >>cos<< >>cri<< >>crs<< >>dlm<< >>drc<< >>egl<< >>ext<< >>fab<< >>fax<< >>fra<< >>frc<< >>frm<< >>fro<< >>frp<< >>fur<< >>gcf<< >>gcr<< >>glg<< >>hat<< >>idb<< >>ist<< >>ita<< >>itk<< >>kea<< >>kmv<< >>lad<< >>lad_Latn<< >>lat<< >>lat_Latn<< >>lij<< >>lld<< >>lmo<< >>lou<< >>mcm<< >>mfe<< >>mol<< >>mwl<< >>mxi<< >>mzs<< >>nap<< >>nrf<< >>oci<< >>osc<< >>osp<< >>osp_Latn<< >>pap<< >>pcd<< >>pln<< >>pms<< >>pob<< >>por<< >>pov<< >>pre<< >>pro<< >>qbb<< >>qhr<< >>rcf<< >>rgn<< >>roh<< >>ron<< >>ruo<< >>rup<< >>ruq<< >>scf<< >>scn<< >>sdc<< >>sdn<< >>spa<< >>spq<< >>spx<< >>src<< >>srd<< >>sro<< >>tmg<< >>tvy<< >>vec<< >>vkp<< >>wln<< >>xfa<< >>xum<<
- **Original Model**: [opusTCv20210807_transformer-big_2022-08-09.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-itc/opusTCv20210807_transformer-big_2022-08-09.zip)
- **Resources for more information:**
  - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
  - More information about released models for this language pair: [OPUS-MT gmq-itc README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-itc/README.md)
  - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
  - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/

This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>fra<<`

## Uses

This model can be used for translation and text-to-text generation.

## Risks, Limitations and Biases

**CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**

Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).

## How to Get Started With the Model

A short example code:

```python
from transformers import MarianMTModel, MarianTokenizer

src_text = [
    ">>spa<< Jag är inte religiös.",
    ">>por<< Livet er for kort til å lære seg tysk."
]

model_name = "pytorch-models/opus-mt-tc-big-gmq-itc"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     No soy religioso.
#     A vida é muito curta para aprender alemão.
```

You can also use OPUS-MT models with the transformers pipelines, for example:

```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-gmq-itc")
print(pipe(">>spa<< Jag är inte religiös."))

# expected output: No soy religioso.
```

## Training

- **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
- **Pre-processing**: SentencePiece (spm32k,spm32k)
- **Model Type:**  transformer-big
- **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-08-09.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-itc/opusTCv20210807_transformer-big_2022-08-09.zip)
- **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)

## Evaluation

* test set translations: [opusTCv20210807_transformer-big_2022-08-09.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-itc/opusTCv20210807_transformer-big_2022-08-09.test.txt)
* test set scores: [opusTCv20210807_transformer-big_2022-08-09.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-itc/opusTCv20210807_transformer-big_2022-08-09.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)

| langpair | testset | chr-F | BLEU  | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| dan-fra | tatoeba-test-v2021-08-07 | 0.76671 | 63.8 | 1731 | 11882 |
| dan-ita | tatoeba-test-v2021-08-07 | 0.74658 | 56.2 | 284 | 2226 |
| dan-por | tatoeba-test-v2021-08-07 | 0.74944 | 57.8 | 873 | 5360 |
| dan-spa | tatoeba-test-v2021-08-07 | 0.72328 | 54.8 | 5000 | 35528 |
| isl-ita | tatoeba-test-v2021-08-07 | 0.69354 | 51.0 | 236 | 1450 |
| isl-spa | tatoeba-test-v2021-08-07 | 0.66008 | 49.2 | 238 | 1229 |
| nob-fra | tatoeba-test-v2021-08-07 | 0.70854 | 54.4 | 323 | 2269 |
| nob-spa | tatoeba-test-v2021-08-07 | 0.73672 | 55.9 | 885 | 6866 |
| swe-fra | tatoeba-test-v2021-08-07 | 0.73014 | 59.2 | 1407 | 9580 |
| swe-ita | tatoeba-test-v2021-08-07 | 0.73211 | 56.6 | 715 | 4711 |
| swe-por | tatoeba-test-v2021-08-07 | 0.68146 | 48.7 | 320 | 2032 |
| swe-spa | tatoeba-test-v2021-08-07 | 0.71373 | 55.3 | 1351 | 8235 |
| dan-cat | flores101-devtest | 0.59224 | 33.4 | 1012 | 27304 |
| dan-fra | flores101-devtest | 0.63387 | 38.3 | 1012 | 28343 |
| dan-glg | flores101-devtest | 0.54446 | 26.4 | 1012 | 26582 |
| dan-ita | flores101-devtest | 0.55237 | 25.7 | 1012 | 27306 |
| dan-por | flores101-devtest | 0.62233 | 36.9 | 1012 | 26519 |
| dan-ron | flores101-devtest | 0.58235 | 31.8 | 1012 | 26799 |
| dan-spa | flores101-devtest | 0.52453 | 24.3 | 1012 | 29199 |
| isl-cat | flores101-devtest | 0.48930 | 22.7 | 1012 | 27304 |
| isl-fra | flores101-devtest | 0.52704 | 26.2 | 1012 | 28343 |
| isl-glg | flores101-devtest | 0.45387 | 18.0 | 1012 | 26582 |
| isl-ita | flores101-devtest | 0.47303 | 18.6 | 1012 | 27306 |
| isl-por | flores101-devtest | 0.51381 | 24.9 | 1012 | 26519 |
| isl-ron | flores101-devtest | 0.48224 | 21.6 | 1012 | 26799 |
| isl-spa | flores101-devtest | 0.45786 | 18.1 | 1012 | 29199 |
| nob-cat | flores101-devtest | 0.55984 | 28.9 | 1012 | 27304 |
| nob-fra | flores101-devtest | 0.60102 | 33.8 | 1012 | 28343 |
| nob-glg | flores101-devtest | 0.52145 | 23.4 | 1012 | 26582 |
| nob-ita | flores101-devtest | 0.52619 | 22.2 | 1012 | 27306 |
| nob-por | flores101-devtest | 0.58836 | 32.2 | 1012 | 26519 |
| nob-ron | flores101-devtest | 0.54845 | 27.6 | 1012 | 26799 |
| nob-spa | flores101-devtest | 0.50661 | 21.8 | 1012 | 29199 |
| swe-cat | flores101-devtest | 0.58542 | 32.4 | 1012 | 27304 |
| swe-fra | flores101-devtest | 0.63688 | 39.3 | 1012 | 28343 |
| swe-glg | flores101-devtest | 0.53989 | 26.0 | 1012 | 26582 |
| swe-ita | flores101-devtest | 0.55232 | 25.9 | 1012 | 27306 |
| swe-por | flores101-devtest | 0.61882 | 36.5 | 1012 | 26519 |
| swe-ron | flores101-devtest | 0.57419 | 31.0 | 1012 | 26799 |
| swe-spa | flores101-devtest | 0.52175 | 23.8 | 1012 | 29199 |

## Citation Information

* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)

```
@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}
```

## Acknowledgements

The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.

## Model conversion info

* transformers version: 4.16.2
* OPUS-MT git hash: 8b9f0b0
* port time: Sat Aug 13 00:00:00 EEST 2022
* port machine: LM0-400-22516.local