File size: 12,571 Bytes
aa3263c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f594ac5
aa3263c
 
 
 
 
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
f594ac5
 
 
aa3263c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
---
language:
- be
- bg
- hr
- ru
- sh
- sl
- sr_Cyrl
- sr_Latn
- uk
- zle
- zls
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-zle-zls
  results:
  - task:
      name: Translation rus-bul
      type: translation
      args: rus-bul
    dataset:
      name: flores101-devtest
      type: flores_101
      args: rus bul devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 28.9
  - task:
      name: Translation rus-hrv
      type: translation
      args: rus-hrv
    dataset:
      name: flores101-devtest
      type: flores_101
      args: rus hrv devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 23.2
  - task:
      name: Translation rus-mkd
      type: translation
      args: rus-mkd
    dataset:
      name: flores101-devtest
      type: flores_101
      args: rus mkd devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 24.3
  - task:
      name: Translation rus-slv
      type: translation
      args: rus-slv
    dataset:
      name: flores101-devtest
      type: flores_101
      args: rus slv devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 23.1
  - task:
      name: Translation rus-srp_Cyrl
      type: translation
      args: rus-srp_Cyrl
    dataset:
      name: flores101-devtest
      type: flores_101
      args: rus srp_Cyrl devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 24.1
  - task:
      name: Translation ukr-bul
      type: translation
      args: ukr-bul
    dataset:
      name: flores101-devtest
      type: flores_101
      args: ukr bul devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 30.8
  - task:
      name: Translation ukr-hrv
      type: translation
      args: ukr-hrv
    dataset:
      name: flores101-devtest
      type: flores_101
      args: ukr hrv devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 24.6
  - task:
      name: Translation ukr-mkd
      type: translation
      args: ukr-mkd
    dataset:
      name: flores101-devtest
      type: flores_101
      args: ukr mkd devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 26.2
  - task:
      name: Translation ukr-slv
      type: translation
      args: ukr-slv
    dataset:
      name: flores101-devtest
      type: flores_101
      args: ukr slv devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 24.2
  - task:
      name: Translation ukr-srp_Cyrl
      type: translation
      args: ukr-srp_Cyrl
    dataset:
      name: flores101-devtest
      type: flores_101
      args: ukr srp_Cyrl devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 26.2
  - task:
      name: Translation rus-bul
      type: translation
      args: rus-bul
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: rus-bul
    metrics:
    - name: BLEU
      type: bleu
      value: 53.7
  - task:
      name: Translation rus-hbs
      type: translation
      args: rus-hbs
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: rus-hbs
    metrics:
    - name: BLEU
      type: bleu
      value: 49.4
  - task:
      name: Translation rus-slv
      type: translation
      args: rus-slv
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: rus-slv
    metrics:
    - name: BLEU
      type: bleu
      value: 21.5
  - task:
      name: Translation rus-srp_Cyrl
      type: translation
      args: rus-srp_Cyrl
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: rus-srp_Cyrl
    metrics:
    - name: BLEU
      type: bleu
      value: 46.1
  - task:
      name: Translation rus-srp_Latn
      type: translation
      args: rus-srp_Latn
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: rus-srp_Latn
    metrics:
    - name: BLEU
      type: bleu
      value: 51.7
  - task:
      name: Translation ukr-bul
      type: translation
      args: ukr-bul
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: ukr-bul
    metrics:
    - name: BLEU
      type: bleu
      value: 61.3
  - task:
      name: Translation ukr-hbs
      type: translation
      args: ukr-hbs
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: ukr-hbs
    metrics:
    - name: BLEU
      type: bleu
      value: 52.1
  - task:
      name: Translation ukr-hrv
      type: translation
      args: ukr-hrv
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: ukr-hrv
    metrics:
    - name: BLEU
      type: bleu
      value: 50.1
  - task:
      name: Translation ukr-srp_Cyrl
      type: translation
      args: ukr-srp_Cyrl
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: ukr-srp_Cyrl
    metrics:
    - name: BLEU
      type: bleu
      value: 54.7
  - task:
      name: Translation ukr-srp_Latn
      type: translation
      args: ukr-srp_Latn
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: ukr-srp_Latn
    metrics:
    - name: BLEU
      type: bleu
      value: 53.4
---
# opus-mt-tc-big-zle-zls

Neural machine translation model for translating from East Slavic languages (zle) to South Slavic languages (zls).

This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).

* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)

```
@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}
```

## Model info

* Release: 2022-03-23
* source language(s): bel rus ukr
* target language(s): bul hbs hrv slv srp_Cyrl srp_Latn
* valid target language labels: >>bul<< >>hbs<< >>hrv<< >>slv<< >>srp_Cyrl<< >>srp_Latn<<
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zls/opusTCv20210807+bt_transformer-big_2022-03-23.zip)
* more information released models: [OPUS-MT zle-zls README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-zls/README.md)
* more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)

This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bul<<`

## Usage

A short example code:

```python
from transformers import MarianMTModel, MarianTokenizer

src_text = [
    ">>bul<< Новы каранавірус вельмі заразны.",
    ">>srp_Latn<< Моє ім'я — Саллі."
]

model_name = "pytorch-models/opus-mt-tc-big-zle-zls"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Короната е силно заразна.
#     Zovem se Sali.
```

You can also use OPUS-MT models with the transformers pipelines, for example:

```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-zls")
print(pipe(">>bul<< Новы каранавірус вельмі заразны."))

# expected output: Короната е силно заразна.
```

## Benchmarks

* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zls/opusTCv20210807+bt_transformer-big_2022-03-23.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zls/opusTCv20210807+bt_transformer-big_2022-03-23.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)

| langpair | testset | chr-F | BLEU  | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| rus-bul | tatoeba-test-v2021-08-07 | 0.71515 | 53.7 | 1247 | 8272 |
| rus-hbs | tatoeba-test-v2021-08-07 | 0.69192 | 49.4 | 2500 | 14736 |
| rus-slv | tatoeba-test-v2021-08-07 | 0.38051 | 21.5 | 657 | 3969 |
| rus-srp_Cyrl | tatoeba-test-v2021-08-07 | 0.66622 | 46.1 | 881 | 5407 |
| rus-srp_Latn | tatoeba-test-v2021-08-07 | 0.70990 | 51.7 | 1483 | 8552 |
| ukr-bul | tatoeba-test-v2021-08-07 | 0.77283 | 61.3 | 1020 | 5181 |
| ukr-hbs | tatoeba-test-v2021-08-07 | 0.69401 | 52.1 | 942 | 5130 |
| ukr-hrv | tatoeba-test-v2021-08-07 | 0.67202 | 50.1 | 389 | 2302 |
| ukr-srp_Cyrl | tatoeba-test-v2021-08-07 | 0.70064 | 54.7 | 205 | 1112 |
| ukr-srp_Latn | tatoeba-test-v2021-08-07 | 0.72405 | 53.4 | 348 | 1716 |
| bel-bul | flores101-devtest | 0.49528 | 16.1 | 1012 | 24700 |
| bel-hrv | flores101-devtest | 0.46308 | 12.4 | 1012 | 22423 |
| bel-mkd | flores101-devtest | 0.48608 | 13.5 | 1012 | 24314 |
| bel-slv | flores101-devtest | 0.44452 | 12.2 | 1012 | 23425 |
| bel-srp_Cyrl | flores101-devtest | 0.44424 | 12.6 | 1012 | 23456 |
| rus-bul | flores101-devtest | 0.58653 | 28.9 | 1012 | 24700 |
| rus-hrv | flores101-devtest | 0.53494 | 23.2 | 1012 | 22423 |
| rus-mkd | flores101-devtest | 0.55184 | 24.3 | 1012 | 24314 |
| rus-slv | flores101-devtest | 0.52201 | 23.1 | 1012 | 23425 |
| rus-srp_Cyrl | flores101-devtest | 0.53038 | 24.1 | 1012 | 23456 |
| ukr-bul | flores101-devtest | 0.59625 | 30.8 | 1012 | 24700 |
| ukr-hrv | flores101-devtest | 0.54530 | 24.6 | 1012 | 22423 |
| ukr-mkd | flores101-devtest | 0.56822 | 26.2 | 1012 | 24314 |
| ukr-slv | flores101-devtest | 0.53092 | 24.2 | 1012 | 23425 |
| ukr-srp_Cyrl | flores101-devtest | 0.54618 | 26.2 | 1012 | 23456 |

## Acknowledgements

The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.

## Model conversion info

* transformers version: 4.16.2
* OPUS-MT git hash: 1bdabf7
* port time: Thu Mar 24 00:46:26 EET 2022
* port machine: LM0-400-22516.local