--- language: - hi license: apache-2.0 base_model: openai/whisper-large tags: - hf-asr-leaderboard - speech-recognition - whisper - hindi - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper-small-hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 34.055701345974775 --- # whisper-small-hindi This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2842 - Wer: 34.0557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 818 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1263 | 1.0 | 409 | 0.2835 | 36.1212 | | 0.0693 | 2.0 | 818 | 0.2842 | 34.0557 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1