File size: 24,626 Bytes
aba0e05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import numpy as np
import torch
from torch import nn
import os
from collections import OrderedDict
from torch.autograd import Variable
import util.util as util
from collections import OrderedDict
from torch.autograd import Variable
import itertools
import util.util as util
from util.image_pool import ImagePool
from .base_model import BaseModel
import random
from . import networks
import sys


class TempModel(BaseModel):
    def name(self):
        return 'TempModel'

    def initialize(self, opt):
        BaseModel.initialize(self, opt)

        nb = opt.batchSize
        size = opt.fineSize
        self.opt = opt
        self.input_A = self.Tensor(nb, opt.input_nc, size, size)
        self.input_B = self.Tensor(nb, opt.output_nc, size, size)
        self.input_img = self.Tensor(nb, opt.input_nc, size, size)
        self.input_A_gray = self.Tensor(nb, 1, size, size)

        if opt.vgg > 0:
            self.vgg_loss = networks.PerceptualLoss(opt)
            # if self.opt.IN_vgg:
            #     self.vgg_patch_loss = networks.PerceptualLoss(opt)
            #     self.vgg_patch_loss.cuda()
            self.vgg_loss.cuda()
            self.vgg = networks.load_vgg16("./model", self.gpu_ids)
            self.vgg.eval()
            for param in self.vgg.parameters():
                param.requires_grad = False
        elif opt.fcn > 0:
            self.fcn_loss = networks.SemanticLoss(opt)
            self.fcn_loss.cuda()
            self.fcn = networks.load_fcn("./model")
            self.fcn.eval()
            for param in self.fcn.parameters():
                param.requires_grad = False
        # load/define networks
        # The naming conversion is different from those used in the paper
        # Code (paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)

        skip = True if opt.skip > 0 else False
        self.netG_A = networks.define_G(opt.input_nc, opt.output_nc,
                                        opt.ngf, opt.which_model_netG, opt.norm, not opt.no_dropout, self.gpu_ids, skip=skip, opt=opt)
        # self.netG_B = networks.define_G(opt.output_nc, opt.input_nc,
        #                                 opt.ngf, opt.which_model_netG, opt.norm, not opt.no_dropout, self.gpu_ids, skip=False, opt=opt)

        if self.isTrain:
            use_sigmoid = opt.no_lsgan
            self.netD_A = networks.define_D(opt.output_nc, opt.ndf,
                                            opt.which_model_netD,
                                            opt.n_layers_D, opt.norm, use_sigmoid, self.gpu_ids, False)
            if self.opt.patchD:
                self.netD_P = networks.define_D(opt.input_nc, opt.ndf,
                                            opt.which_model_netD,
                                            opt.n_layers_patchD, opt.norm, use_sigmoid, self.gpu_ids, True)
        if not self.isTrain or opt.continue_train:
            which_epoch = opt.which_epoch
            self.load_network(self.netG_A, 'G_A', which_epoch)
            # self.load_network(self.netG_B, 'G_B', which_epoch)
            if self.isTrain:
                self.load_network(self.netD_A, 'D_A', which_epoch)
                if self.opt.patchD:
                    self.load_network(self.netD_P, 'D_P', which_epoch)

        if self.isTrain:
            self.old_lr = opt.lr
            # self.fake_A_pool = ImagePool(opt.pool_size)
            self.fake_B_pool = ImagePool(opt.pool_size)
            # define loss functions
            if opt.use_wgan:
                self.criterionGAN = networks.DiscLossWGANGP()
            else:
                self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)
            if opt.use_mse:
                self.criterionCycle = torch.nn.MSELoss()
            else:
                self.criterionCycle = torch.nn.L1Loss()
            self.criterionL1 = torch.nn.L1Loss()
            self.criterionIdt = torch.nn.L1Loss()
            # initialize optimizers
            self.optimizer_G = torch.optim.Adam(self.netG_A.parameters(),
                                                lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizer_D_A = torch.optim.Adam(self.netD_A.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
            # if self.opt.patchD:
            #     self.optimizer_D_P = torch.optim.Adam(self.netD_P.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))

        print('---------- Networks initialized -------------')
        networks.print_network(self.netG_A)
        # networks.print_network(self.netG_B)
        if self.isTrain:
            networks.print_network(self.netD_A)
            # if self.opt.patchD:
            #     networks.print_network(self.netD_P)
            # networks.print_network(self.netD_B)
        if opt.isTrain:
            self.netG_A.train()
            # self.netG_B.train()
        else:
            self.netG_A.eval()
            # self.netG_B.eval()
        print('-----------------------------------------------')

    def set_input(self, input):
        AtoB = self.opt.which_direction == 'AtoB'
        input_A = input['A' if AtoB else 'B']
        input_B = input['B' if AtoB else 'A']
        input_img = input['input_img']
        input_A_gray = input['A_gray']
        self.input_A.resize_(input_A.size()).copy_(input_A)
        self.input_A_gray.resize_(input_A_gray.size()).copy_(input_A_gray)
        self.input_B.resize_(input_B.size()).copy_(input_B)
        self.input_img.resize_(input_img.size()).copy_(input_img)
        self.image_paths = input['A_paths' if AtoB else 'B_paths']

    


    def test(self):
        self.real_A = Variable(self.input_A, volatile=True)
        self.real_A_gray = Variable(self.input_A_gray, volatile=True)
        if self.opt.noise > 0:
            self.noise = Variable(torch.cuda.FloatTensor(self.real_A.size()).normal_(mean=0, std=self.opt.noise/255.))
            self.real_A = self.real_A + self.noise
        if self.opt.input_linear:
            self.real_A = (self.real_A - torch.min(self.real_A))/(torch.max(self.real_A) - torch.min(self.real_A))
        # print(np.transpose(self.real_A.data[0].cpu().float().numpy(),(1,2,0))[:2][:2][:])
        if self.opt.skip == 1:
            self.fake_B, self.latent_real_A = self.netG_A.forward(self.real_A, self.real_A_gray)
        else:
            self.fake_B = self.netG_A.forward(self.real_A, self.real_A_gray)
        # self.rec_A = self.netG_B.forward(self.fake_B)

        self.real_B = Variable(self.input_B, volatile=True)


    def predict(self):
        self.real_A = Variable(self.input_A, volatile=True)
        self.real_A_gray = Variable(self.input_A_gray, volatile=True)
        # if self.opt.noise > 0:
        #     self.noise = Variable(torch.cuda.FloatTensor(self.real_A.size()).normal_(mean=0, std=self.opt.noise/255.))
        #     self.real_A = self.real_A + self.noise
        # if self.opt.input_linear:
        #     self.real_A = (self.real_A - torch.min(self.real_A))/(torch.max(self.real_A) - torch.min(self.real_A))
        # print(np.transpose(self.real_A.data[0].cpu().float().numpy(),(1,2,0))[:2][:2][:])
        if self.opt.skip == 1:
            self.fake_B, self.latent_real_A = self.netG_A.forward(self.real_A, self.real_A_gray)
        else:
            self.fake_B = self.netG_A.forward(self.real_A, self.real_A_gray)
        # self.rec_A = self.netG_B.forward(self.fake_B)

        real_A = util.tensor2im(self.real_A.data)
        fake_B = util.tensor2im(self.fake_B.data)
        A_gray = util.atten2im(self.real_A_gray.data)
        # rec_A = util.tensor2im(self.rec_A.data)
        # if self.opt.skip == 1:
        #     latent_real_A = util.tensor2im(self.latent_real_A.data)
        #     latent_show = util.latent2im(self.latent_real_A.data)
        #     max_image = util.max2im(self.fake_B.data, self.latent_real_A.data)
        #     return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A),
        #                     ('latent_show', latent_show), ('max_image', max_image), ('A_gray', A_gray)])
        # else:
        #     return OrderedDict([('real_A', real_A), ('fake_B', fake_B)])
        # return OrderedDict([('fake_B', fake_B)])
        return OrderedDict([('real_A', real_A), ('fake_B', fake_B)])

    # get image paths
    def get_image_paths(self):
        return self.image_paths

    def backward_D_basic(self, netD, real, fake, use_ragan):
        # Real
        pred_real = netD.forward(real)
        pred_fake = netD.forward(fake.detach())
        if self.opt.use_wgan:
            loss_D_real = pred_real.mean()
            loss_D_fake = pred_fake.mean()
            loss_D = loss_D_fake - loss_D_real + self.criterionGAN.calc_gradient_penalty(netD, 
                                                real.data, fake.data)
        elif self.opt.use_ragan and use_ragan:
            loss_D = (self.criterionGAN(pred_real - torch.mean(pred_fake), True) +
                                      self.criterionGAN(pred_fake - torch.mean(pred_real), False)) / 2
        else:
            loss_D_real = self.criterionGAN(pred_real, True)
            loss_D_fake = self.criterionGAN(pred_fake, False)
            loss_D = (loss_D_real + loss_D_fake) * 0.5
        # loss_D.backward()
        return loss_D

    def backward_D_A(self):
        fake_B = self.fake_B_pool.query(self.fake_B)
        fake_B = self.fake_B
        self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B, True)
        self.loss_D_A.backward()
    
    def backward_D_P(self):
        if self.opt.hybrid_loss:
            loss_D_P = self.backward_D_basic(self.netD_P, self.real_patch, self.fake_patch, False)
            if self.opt.patchD_3 > 0:
                for i in range(self.opt.patchD_3):
                    loss_D_P += self.backward_D_basic(self.netD_P, self.real_patch_1[i], self.fake_patch_1[i], False)
                self.loss_D_P = loss_D_P/float(self.opt.patchD_3 + 1)
            else:
                self.loss_D_P = loss_D_P
        else:
            loss_D_P = self.backward_D_basic(self.netD_P, self.real_patch, self.fake_patch, True)
            if self.opt.patchD_3 > 0:
                for i in range(self.opt.patchD_3):
                    loss_D_P += self.backward_D_basic(self.netD_P, self.real_patch_1[i], self.fake_patch_1[i], True)
                self.loss_D_P = loss_D_P/float(self.opt.patchD_3 + 1)
            else:
                self.loss_D_P = loss_D_P
        if self.opt.D_P_times2:
            self.loss_D_P = self.loss_D_P*2
        self.loss_D_P.backward()

    # def backward_D_B(self):
    #     fake_A = self.fake_A_pool.query(self.fake_A)
    #     self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)
    def forward(self):
        self.real_A = Variable(self.input_A)
        self.real_B = Variable(self.input_B)
        self.real_A_gray = Variable(self.input_A_gray)
        self.real_img = Variable(self.input_img)
        if self.opt.noise > 0:
            self.noise = Variable(torch.cuda.FloatTensor(self.real_A.size()).normal_(mean=0, std=self.opt.noise/255.))
            self.real_A = self.real_A + self.noise
        if self.opt.input_linear:
            self.real_A = (self.real_A - torch.min(self.real_A))/(torch.max(self.real_A) - torch.min(self.real_A))
        if self.opt.skip == 1:
            self.fake_B, self.latent_real_A = self.netG_A.forward(self.real_img, self.real_A_gray)
        else:
            self.fake_B = self.netG_A.forward(self.real_img, self.real_A_gray)
        if self.opt.patchD:
            w = self.real_A.size(3)
            h = self.real_A.size(2)
            w_offset = random.randint(0, max(0, w - self.opt.patchSize - 1))
            h_offset = random.randint(0, max(0, h - self.opt.patchSize - 1))

            self.fake_patch = self.fake_B[:,:, h_offset:h_offset + self.opt.patchSize,
                   w_offset:w_offset + self.opt.patchSize]
            self.real_patch = self.real_B[:,:, h_offset:h_offset + self.opt.patchSize,
                   w_offset:w_offset + self.opt.patchSize]
            self.input_patch = self.real_A[:,:, h_offset:h_offset + self.opt.patchSize,
                   w_offset:w_offset + self.opt.patchSize]
        if self.opt.patchD_3 > 0:
            self.fake_patch_1 = []
            self.real_patch_1 = []
            self.input_patch_1 = []
            w = self.real_A.size(3)
            h = self.real_A.size(2)
            for i in range(self.opt.patchD_3):
                w_offset_1 = random.randint(0, max(0, w - self.opt.patchSize - 1))
                h_offset_1 = random.randint(0, max(0, h - self.opt.patchSize - 1))
                self.fake_patch_1.append(self.fake_B[:,:, h_offset_1:h_offset_1 + self.opt.patchSize,
                    w_offset_1:w_offset_1 + self.opt.patchSize])
                self.real_patch_1.append(self.real_B[:,:, h_offset_1:h_offset_1 + self.opt.patchSize,
                    w_offset_1:w_offset_1 + self.opt.patchSize])
                self.input_patch_1.append(self.real_A[:,:, h_offset_1:h_offset_1 + self.opt.patchSize,
                    w_offset_1:w_offset_1 + self.opt.patchSize])

            w_offset_2 = random.randint(0, max(0, w - self.opt.patchSize - 1))
            h_offset_2 = random.randint(0, max(0, h - self.opt.patchSize - 1))
            self.fake_patch_2 = self.fake_B[:,:, h_offset_2:h_offset_2 + self.opt.patchSize,
                   w_offset_2:w_offset_2 + self.opt.patchSize]
            self.real_patch_2 = self.real_B[:,:, h_offset_2:h_offset_2 + self.opt.patchSize,
                   w_offset_2:w_offset_2 + self.opt.patchSize]
            self.input_patch_2 = self.real_A[:,:, h_offset_2:h_offset_2 + self.opt.patchSize,
                   w_offset_2:w_offset_2 + self.opt.patchSize]

    def backward_G(self, epoch):
        pred_fake = self.netD_A.forward(self.fake_B)
        if self.opt.use_wgan:
            self.loss_G_A = -pred_fake.mean()
        elif self.opt.use_ragan:
            pred_real = self.netD_A.forward(self.real_B)

            self.loss_G_A = (self.criterionGAN(pred_real - torch.mean(pred_fake), False) +
                                      self.criterionGAN(pred_fake - torch.mean(pred_real), True)) / 2
            
        else:
            self.loss_G_A = self.criterionGAN(pred_fake, True)
        
        loss_G_A = 0
        if self.opt.patchD:
            pred_fake_patch = self.netD_P.forward(self.fake_patch)
            if self.opt.hybrid_loss:
                loss_G_A += self.criterionGAN(pred_fake_patch, True)
            else:
                pred_real_patch = self.netD_P.forward(self.real_patch)
                
                loss_G_A += (self.criterionGAN(pred_real_patch - torch.mean(pred_fake_patch), False) +
                                      self.criterionGAN(pred_fake_patch - torch.mean(pred_real_patch), True)) / 2
            self.loss_G_A += loss_G_A
        if self.opt.patchD_3 > 0:   
            for i in range(self.opt.patchD_3):
                pred_fake_patch_1 = self.netD_P.forward(self.fake_patch_1[i])
                if self.opt.hybrid_loss:
                    loss_G_A += self.criterionGAN(pred_fake_patch_1, True)
                else:
                    pred_real_patch_1 = self.netD_P.forward(self.real_patch_1[i])
                    
                    loss_G_A += (self.criterionGAN(pred_real_patch_1 - torch.mean(pred_fake_patch_1), False) +
                                        self.criterionGAN(pred_fake_patch_1 - torch.mean(pred_real_patch_1), True)) / 2
                    
            if not self.opt.D_P_times2:
                self.loss_G_A += loss_G_A/float(self.opt.patchD_3 + 1)
            else:
                self.loss_G_A += loss_G_A/float(self.opt.patchD_3 + 1)*2
        else:
            if not self.opt.D_P_times2:
        self.loss_G_A += loss_G_A
            else:
                self.loss_G_A += loss_G_A*2
                
        if epoch < 0:
            vgg_w = 0
        else:
            vgg_w = 1
        if self.opt.vgg > 0:
            self.loss_vgg_b = self.vgg_loss.compute_vgg_loss(self.vgg, 
                    self.fake_B, self.real_A) * self.opt.vgg if self.opt.vgg > 0 else 0
            if self.opt.patch_vgg:
                if not self.opt.IN_vgg:
                    loss_vgg_patch = self.vgg_loss.compute_vgg_loss(self.vgg, 
                    self.fake_patch, self.input_patch) * self.opt.vgg
                else:
                    loss_vgg_patch = self.vgg_patch_loss.compute_vgg_loss(self.vgg, 
                    self.fake_patch, self.input_patch) * self.opt.vgg
                if self.opt.patchD_3 > 0:
                    for i in range(self.opt.patchD_3):
                        if not self.opt.IN_vgg:
                            loss_vgg_patch += self.vgg_loss.compute_vgg_loss(self.vgg, 
                                self.fake_patch_1[i], self.input_patch_1[i]) * self.opt.vgg
                        else:
                            loss_vgg_patch += self.vgg_patch_loss.compute_vgg_loss(self.vgg, 
                                self.fake_patch_1[i], self.input_patch_1[i]) * self.opt.vgg
                    self.loss_vgg_b += loss_vgg_patch/float(self.opt.patchD_3 + 1)
                else:
                    self.loss_vgg_b += loss_vgg_patch
            self.loss_G = self.loss_G_A + self.loss_vgg_b*vgg_w
        elif self.opt.fcn > 0:
            self.loss_fcn_b = self.fcn_loss.compute_fcn_loss(self.fcn, 
                    self.fake_B, self.real_A) * self.opt.fcn if self.opt.fcn > 0 else 0
            if self.opt.patchD:
                loss_fcn_patch = self.fcn_loss.compute_vgg_loss(self.fcn, 
                    self.fake_patch, self.input_patch) * self.opt.fcn
                if self.opt.patchD_3 > 0:
                    for i in range(self.opt.patchD_3):
                        loss_fcn_patch += self.fcn_loss.compute_vgg_loss(self.fcn, 
                            self.fake_patch_1[i], self.input_patch_1[i]) * self.opt.fcn
                    self.loss_fcn_b += loss_fcn_patch/float(self.opt.patchD_3 + 1)
                else:
                    self.loss_fcn_b += loss_fcn_patch
            self.loss_G = self.loss_G_A + self.loss_fcn_b*vgg_w
        # self.loss_G = self.L1_AB + self.L1_BA
        self.loss_G.backward()


    # def optimize_parameters(self, epoch):
    #     # forward
    #     self.forward()
    #     # G_A and G_B
    #     self.optimizer_G.zero_grad()
    #     self.backward_G(epoch)
    #     self.optimizer_G.step()
    #     # D_A
    #     self.optimizer_D_A.zero_grad()
    #     self.backward_D_A()
    #     self.optimizer_D_A.step()
    #     if self.opt.patchD:
    #         self.forward()
    #         self.optimizer_D_P.zero_grad()
    #         self.backward_D_P()
    #         self.optimizer_D_P.step()
        # D_B
        # self.optimizer_D_B.zero_grad()
        # self.backward_D_B()
        # self.optimizer_D_B.step()
    def optimize_parameters(self, epoch):
        # forward
        self.forward()
        # G_A and G_B
        self.optimizer_G.zero_grad()
        self.backward_G(epoch)
        self.optimizer_G.step()
        # D_A
        self.optimizer_D_A.zero_grad()
        self.backward_D_A()
        if not self.opt.patchD:
            self.optimizer_D_A.step()
        else:
            # self.forward()
            self.optimizer_D_P.zero_grad()
            self.backward_D_P()
            self.optimizer_D_A.step()
            self.optimizer_D_P.step()


    def get_current_errors(self, epoch):
        D_A = self.loss_D_A.data[0]
        D_P = self.loss_D_P.data[0] if self.opt.patchD else 0
        G_A = self.loss_G_A.data[0]
        if self.opt.vgg > 0:
            vgg = self.loss_vgg_b.data[0]/self.opt.vgg if self.opt.vgg > 0 else 0
            return OrderedDict([('D_A', D_A), ('G_A', G_A), ("vgg", vgg)])
        elif self.opt.fcn > 0:
            fcn = self.loss_fcn_b.data[0]/self.opt.fcn if self.opt.fcn > 0 else 0
            return OrderedDict([('D_A', D_A), ('G_A', G_A), ("fcn", fcn)])
        

    def get_current_visuals(self):
        real_A = util.tensor2im(self.real_A.data)
        fake_B = util.tensor2im(self.fake_B.data)
        real_B = util.tensor2im(self.real_B.data)
        if self.opt.skip > 0:
            latent_real_A = util.tensor2im(self.latent_real_A.data)
            latent_show = util.latent2im(self.latent_real_A.data)
            return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A),
                                ('latent_show', latent_show), ('real_B', real_B)])
        #     if self.opt.patchD:
        #         fake_patch = util.tensor2im(self.fake_patch.data)
        #         real_patch = util.tensor2im(self.real_patch.data)
        #         if self.opt.patch_vgg:
        #             input_patch = util.tensor2im(self.input_patch.data)
        #             if not self.opt.self_attention:
        #                 return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A),
        #                         ('latent_show', latent_show), ('real_B', real_B), ('real_patch', real_patch),
        #                         ('fake_patch', fake_patch), ('input_patch', input_patch)])
        #             else:
        #                 self_attention = util.atten2im(self.real_A_gray.data)
        #                 return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A),
        #                         ('latent_show', latent_show), ('real_B', real_B), ('real_patch', real_patch),
        #                         ('fake_patch', fake_patch), ('input_patch', input_patch), ('self_attention', self_attention)])
        #         else:
        #             if not self.opt.self_attention:
        #                 return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A),
        #                         ('latent_show', latent_show), ('real_B', real_B), ('real_patch', real_patch),
        #                         ('fake_patch', fake_patch)])
        #             else:
        #                 self_attention = util.atten2im(self.real_A_gray.data)
        #                 return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A),
        #                         ('latent_show', latent_show), ('real_B', real_B), ('real_patch', real_patch),
        #                         ('fake_patch', fake_patch), ('self_attention', self_attention)])
        #     else:
        #         if not self.opt.self_attention:
        #             return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A),
        #                         ('latent_show', latent_show), ('real_B', real_B)])
        #         else:
        #             self_attention = util.atten2im(self.real_A_gray.data)
        #             return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('real_B', real_B),
        #                             ('latent_real_A', latent_real_A), ('latent_show', latent_show),
        #                             ('self_attention', self_attention)])
        # else:
        #     if not self.opt.self_attention:
        #         return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('real_B', real_B)])
        #     else:
        #         self_attention = util.atten2im(self.real_A_gray.data)
        #         return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('real_B', real_B),
        #                             ('self_attention', self_attention)])

    def save(self, label):
        self.save_network(self.netG_A, 'G_A', label, self.gpu_ids)
        self.save_network(self.netD_A, 'D_A', label, self.gpu_ids)
        if self.opt.patchD:
            self.save_network(self.netD_P, 'D_P', label, self.gpu_ids)
        # self.save_network(self.netG_B, 'G_B', label, self.gpu_ids)
        # self.save_network(self.netD_B, 'D_B', label, self.gpu_ids)

    def update_learning_rate(self):
        
        if self.opt.new_lr:
            lr = self.old_lr/2
        else:
            lrd = self.opt.lr / self.opt.niter_decay
            lr = self.old_lr - lrd
        for param_group in self.optimizer_D_A.param_groups:
            param_group['lr'] = lr
        if self.opt.patchD:
            for param_group in self.optimizer_D_P.param_groups:
                param_group['lr'] = lr
        for param_group in self.optimizer_G.param_groups:
            param_group['lr'] = lr

        print('update learning rate: %f -> %f' % (self.old_lr, lr))
        self.old_lr = lr