File size: 6,957 Bytes
aba0e05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# from __future__ import print_function
import numpy as np
from PIL import Image
import inspect, re
import numpy as np
import torch
import os
import collections
from torch.optim import lr_scheduler
import torch.nn.init as init
# Converts a Tensor into a Numpy array
# |imtype|: the desired type of the converted numpy array
def tensor2im(image_tensor, imtype=np.uint8):
image_numpy = image_tensor[0].cpu().float().numpy()
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
image_numpy = np.maximum(image_numpy, 0)
image_numpy = np.minimum(image_numpy, 255)
return image_numpy.astype(imtype)
def atten2im(image_tensor, imtype=np.uint8):
image_tensor = image_tensor[0]
image_tensor = torch.cat((image_tensor, image_tensor, image_tensor), 0)
image_numpy = image_tensor.cpu().float().numpy()
image_numpy = (np.transpose(image_numpy, (1, 2, 0))) * 255.0
image_numpy = image_numpy/(image_numpy.max()/255.0)
return image_numpy.astype(imtype)
def latent2im(image_tensor, imtype=np.uint8):
# image_tensor = (image_tensor - torch.min(image_tensor))/(torch.max(image_tensor)-torch.min(image_tensor))
image_numpy = image_tensor[0].cpu().float().numpy()
image_numpy = (np.transpose(image_numpy, (1, 2, 0))) * 255.0
image_numpy = np.maximum(image_numpy, 0)
image_numpy = np.minimum(image_numpy, 255)
return image_numpy.astype(imtype)
def max2im(image_1, image_2, imtype=np.uint8):
image_1 = image_1[0].cpu().float().numpy()
image_2 = image_2[0].cpu().float().numpy()
image_1 = (np.transpose(image_1, (1, 2, 0)) + 1) / 2.0 * 255.0
image_2 = (np.transpose(image_2, (1, 2, 0))) * 255.0
output = np.maximum(image_1, image_2)
output = np.maximum(output, 0)
output = np.minimum(output, 255)
return output.astype(imtype)
def variable2im(image_tensor, imtype=np.uint8):
image_numpy = image_tensor[0].data.cpu().float().numpy()
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
return image_numpy.astype(imtype)
def diagnose_network(net, name='network'):
mean = 0.0
count = 0
for param in net.parameters():
if param.grad is not None:
mean += torch.mean(torch.abs(param.grad.data))
count += 1
if count > 0:
mean = mean / count
print(name)
print(mean)
def save_image(image_numpy, image_path):
image_pil = Image.fromarray(image_numpy)
image_pil.save(image_path)
def info(object, spacing=10, collapse=1):
"""Print methods and doc strings.
Takes module, class, list, dictionary, or string."""
methodList = [e for e in dir(object) if isinstance(getattr(object, e), collections.Callable)]
processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)
print( "\n".join(["%s %s" %
(method.ljust(spacing),
processFunc(str(getattr(object, method).__doc__)))
for method in methodList]) )
def varname(p):
for line in inspect.getframeinfo(inspect.currentframe().f_back)[3]:
m = re.search(r'\bvarname\s*\(\s*([A-Za-z_][A-Za-z0-9_]*)\s*\)', line)
if m:
return m.group(1)
def print_numpy(x, val=True, shp=False):
x = x.astype(np.float64)
if shp:
print('shape,', x.shape)
if val:
x = x.flatten()
print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % (
np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)))
def mkdirs(paths):
if isinstance(paths, list) and not isinstance(paths, str):
for path in paths:
mkdir(path)
else:
mkdir(paths)
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def get_model_list(dirname, key):
if os.path.exists(dirname) is False:
return None
gen_models = [os.path.join(dirname, f) for f in os.listdir(dirname) if
os.path.isfile(os.path.join(dirname, f)) and key in f and ".pt" in f]
if gen_models is None:
return None
gen_models.sort()
last_model_name = gen_models[-1]
return last_model_name
def load_vgg16(model_dir):
""" Use the model from https://github.com/abhiskk/fast-neural-style/blob/master/neural_style/utils.py """
if not os.path.exists(model_dir):
os.mkdir(model_dir)
if not os.path.exists(os.path.join(model_dir, 'vgg16.weight')):
if not os.path.exists(os.path.join(model_dir, 'vgg16.t7')):
os.system('wget https://www.dropbox.com/s/76l3rt4kyi3s8x7/vgg16.t7?dl=1 -O ' + os.path.join(model_dir, 'vgg16.t7'))
vgglua = load_lua(os.path.join(model_dir, 'vgg16.t7'))
vgg = Vgg16()
for (src, dst) in zip(vgglua.parameters()[0], vgg.parameters()):
dst.data[:] = src
torch.save(vgg.state_dict(), os.path.join(model_dir, 'vgg16.weight'))
vgg = Vgg16()
vgg.load_state_dict(torch.load(os.path.join(model_dir, 'vgg16.weight')))
return vgg
def vgg_preprocess(batch):
tensortype = type(batch.data)
(r, g, b) = torch.chunk(batch, 3, dim = 1)
batch = torch.cat((b, g, r), dim = 1) # convert RGB to BGR
batch = (batch + 1) * 255 * 0.5 # [-1, 1] -> [0, 255]
mean = tensortype(batch.data.size())
mean[:, 0, :, :] = 103.939
mean[:, 1, :, :] = 116.779
mean[:, 2, :, :] = 123.680
batch = batch.sub(Variable(mean)) # subtract mean
return batch
def get_scheduler(optimizer, hyperparameters, iterations=-1):
if 'lr_policy' not in hyperparameters or hyperparameters['lr_policy'] == 'constant':
scheduler = None # constant scheduler
elif hyperparameters['lr_policy'] == 'step':
scheduler = lr_scheduler.StepLR(optimizer, step_size=hyperparameters['step_size'],
gamma=hyperparameters['gamma'], last_epoch=iterations)
else:
return NotImplementedError('learning rate policy [%s] is not implemented', hyperparameters['lr_policy'])
return scheduler
def weights_init(init_type='gaussian'):
def init_fun(m):
classname = m.__class__.__name__
if (classname.find('Conv') == 0 or classname.find('Linear') == 0) and hasattr(m, 'weight'):
# print m.__class__.__name__
if init_type == 'gaussian':
init.normal(m.weight.data, 0.0, 0.02)
elif init_type == 'xavier':
init.xavier_normal(m.weight.data, gain=math.sqrt(2))
elif init_type == 'kaiming':
init.kaiming_normal(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal(m.weight.data, gain=math.sqrt(2))
elif init_type == 'default':
pass
else:
assert 0, "Unsupported initialization: {}".format(init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant(m.bias.data, 0.0)
return init_fun |