EnlightenGAN / data /base_dataset.py
HenryGong's picture
Upload 84 files
aba0e05 verified
import torch.utils.data as data
from PIL import Image
import torchvision.transforms as transforms
import random
class BaseDataset(data.Dataset):
def __init__(self):
super(BaseDataset, self).__init__()
def name(self):
return 'BaseDataset'
def initialize(self, opt):
pass
def get_transform(opt):
transform_list = []
if opt.resize_or_crop == 'resize_and_crop':
zoom = 1 + 0.1*radom.randint(0,4)
osize = [int(400*zoom), int(600*zoom)]
transform_list.append(transforms.Scale(osize, Image.BICUBIC))
transform_list.append(transforms.RandomCrop(opt.fineSize))
elif opt.resize_or_crop == 'crop':
transform_list.append(transforms.RandomCrop(opt.fineSize))
elif opt.resize_or_crop == 'scale_width':
transform_list.append(transforms.Lambda(
lambda img: __scale_width(img, opt.fineSize)))
elif opt.resize_or_crop == 'scale_width_and_crop':
transform_list.append(transforms.Lambda(
lambda img: __scale_width(img, opt.loadSize)))
transform_list.append(transforms.RandomCrop(opt.fineSize))
# elif opt.resize_or_crop == 'no':
# osize = [384, 512]
# transform_list.append(transforms.Scale(osize, Image.BICUBIC))
if opt.isTrain and not opt.no_flip:
transform_list.append(transforms.RandomHorizontalFlip())
transform_list += [transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))]
return transforms.Compose(transform_list)
def __scale_width(img, target_width):
ow, oh = img.size
if (ow == target_width):
return img
w = target_width
h = int(target_width * oh / ow)
return img.resize((w, h), Image.BICUBIC)