|
import os.path |
|
import torchvision.transforms as transforms |
|
from data.base_dataset import BaseDataset, get_transform |
|
from data.image_folder import make_dataset |
|
from PIL import Image |
|
|
|
|
|
class SingleDataset(BaseDataset): |
|
def initialize(self, opt): |
|
self.opt = opt |
|
self.root = opt.dataroot |
|
self.dir_A = os.path.join(opt.dataroot) |
|
|
|
self.A_paths = make_dataset(self.dir_A) |
|
|
|
self.A_paths = sorted(self.A_paths) |
|
|
|
self.transform = get_transform(opt) |
|
|
|
def __getitem__(self, index): |
|
A_path = self.A_paths[index] |
|
|
|
A_img = Image.open(A_path).convert('RGB') |
|
A_size = A_img.size |
|
A_size = A_size = (A_size[0]//16*16, A_size[1]//16*16) |
|
A_img = A_img.resize(A_size, Image.BICUBIC) |
|
|
|
A_img = self.transform(A_img) |
|
|
|
return {'A': A_img, 'A_paths': A_path} |
|
|
|
def __len__(self): |
|
return len(self.A_paths) |
|
|
|
def name(self): |
|
return 'SingleImageDataset' |
|
|