|
from torch.autograd import Variable |
|
from collections import OrderedDict |
|
import util.util as util |
|
from .base_model import BaseModel |
|
from . import networks |
|
|
|
|
|
class TestModel(BaseModel): |
|
def name(self): |
|
return 'TestModel' |
|
|
|
def initialize(self, opt): |
|
assert(not opt.isTrain) |
|
BaseModel.initialize(self, opt) |
|
self.input_A = self.Tensor(opt.batchSize, opt.input_nc, opt.fineSize, opt.fineSize) |
|
|
|
self.netG = networks.define_G(opt.input_nc, opt.output_nc, |
|
opt.ngf, opt.which_model_netG, |
|
opt.norm, not opt.no_dropout, |
|
self.gpu_ids) |
|
which_epoch = opt.which_epoch |
|
self.load_network(self.netG, 'G', which_epoch) |
|
|
|
print('---------- Networks initialized -------------') |
|
networks.print_network(self.netG) |
|
print('-----------------------------------------------') |
|
|
|
def set_input(self, input): |
|
|
|
input_A = input['A'] |
|
self.input_A.resize_(input_A.size()).copy_(input_A) |
|
self.image_paths = input['A_paths'] |
|
|
|
def test(self): |
|
self.real_A = Variable(self.input_A) |
|
self.fake_B = self.netG.forward(self.real_A) |
|
|
|
|
|
def get_image_paths(self): |
|
return self.image_paths |
|
|
|
def get_current_visuals(self): |
|
real_A = util.tensor2im(self.real_A.data) |
|
fake_B = util.tensor2im(self.fake_B.data) |
|
return OrderedDict([('real_A', real_A), ('fake_B', fake_B)]) |
|
|