|
import time |
|
from options.train_options import TrainOptions |
|
from data.data_loader import CreateDataLoader |
|
from models.models import create_model |
|
from util.visualizer import Visualizer |
|
|
|
def get_config(config): |
|
import yaml |
|
with open(config, 'r') as stream: |
|
return yaml.load(stream) |
|
|
|
opt = TrainOptions().parse() |
|
config = get_config(opt.config) |
|
data_loader = CreateDataLoader(opt) |
|
dataset = data_loader.load_data() |
|
dataset_size = len(data_loader) |
|
print('#training images = %d' % dataset_size) |
|
|
|
model = create_model(opt) |
|
visualizer = Visualizer(opt) |
|
|
|
total_steps = 0 |
|
|
|
for epoch in range(1, opt.niter + opt.niter_decay + 1): |
|
epoch_start_time = time.time() |
|
for i, data in enumerate(dataset): |
|
iter_start_time = time.time() |
|
total_steps += opt.batchSize |
|
epoch_iter = total_steps - dataset_size * (epoch - 1) |
|
model.set_input(data) |
|
model.optimize_parameters(epoch) |
|
|
|
if total_steps % opt.display_freq == 0: |
|
visualizer.display_current_results(model.get_current_visuals(), epoch) |
|
|
|
if total_steps % opt.print_freq == 0: |
|
errors = model.get_current_errors(epoch) |
|
t = (time.time() - iter_start_time) / opt.batchSize |
|
visualizer.print_current_errors(epoch, epoch_iter, errors, t) |
|
if opt.display_id > 0: |
|
visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors) |
|
|
|
if total_steps % opt.save_latest_freq == 0: |
|
print('saving the latest model (epoch %d, total_steps %d)' % |
|
(epoch, total_steps)) |
|
model.save('latest') |
|
|
|
if epoch % opt.save_epoch_freq == 0: |
|
print('saving the model at the end of epoch %d, iters %d' % |
|
(epoch, total_steps)) |
|
model.save('latest') |
|
model.save(epoch) |
|
|
|
print('End of epoch %d / %d \t Time Taken: %d sec' % |
|
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) |
|
|
|
if opt.new_lr: |
|
if epoch == opt.niter: |
|
model.update_learning_rate() |
|
elif epoch == (opt.niter + 20): |
|
model.update_learning_rate() |
|
elif epoch == (opt.niter + 70): |
|
model.update_learning_rate() |
|
elif epoch == (opt.niter + 90): |
|
model.update_learning_rate() |
|
model.update_learning_rate() |
|
model.update_learning_rate() |
|
model.update_learning_rate() |
|
else: |
|
if epoch > opt.niter: |
|
model.update_learning_rate() |
|
|