import torch import os.path import torchvision.transforms as transforms from data.base_dataset import BaseDataset, get_transform from data.image_folder import make_dataset import random from PIL import Image import PIL from pdb import set_trace as st class UnalignedDataset(BaseDataset): def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') self.A_paths = make_dataset(self.dir_A) self.B_paths = make_dataset(self.dir_B) self.A_paths = sorted(self.A_paths) self.B_paths = sorted(self.B_paths) self.A_size = len(self.A_paths) self.B_size = len(self.B_paths) transform_list = [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] self.transform = transforms.Compose(transform_list) # self.transform = get_transform(opt) def __getitem__(self, index): A_path = self.A_paths[index % self.A_size] B_path = self.B_paths[index % self.B_size] A_img = Image.open(A_path).convert('RGB') B_img = Image.open(B_path).convert('RGB') A_size = A_img.size B_size = B_img.size A_size = A_size = (A_size[0]//16*16, A_size[1]//16*16) B_size = B_size = (B_size[0]//16*16, B_size[1]//16*16) A_img = A_img.resize(A_size, Image.BICUBIC) B_img = B_img.resize(B_size, Image.BICUBIC) A_img = self.transform(A_img) B_img = self.transform(B_img) if self.opt.resize_or_crop == 'no': pass else: w = A_img.size(2) h = A_img.size(1) size = [8,16,22] from random import randint size_index = randint(0,2) Cropsize = size[size_index]*16 w_offset = random.randint(0, max(0, w - Cropsize - 1)) h_offset = random.randint(0, max(0, h - Cropsize - 1)) A_img = A_img[:, h_offset:h_offset + Cropsize, w_offset:w_offset + Cropsize] if (not self.opt.no_flip) and random.random() < 0.5: idx = [i for i in range(A_img.size(2) - 1, -1, -1)] idx = torch.LongTensor(idx) A_img = A_img.index_select(2, idx) B_img = B_img.index_select(2, idx) if (not self.opt.no_flip) and random.random() < 0.5: idx = [i for i in range(A_img.size(1) - 1, -1, -1)] idx = torch.LongTensor(idx) A_img = A_img.index_select(1, idx) B_img = B_img.index_select(1, idx) return {'A': A_img, 'B': B_img, 'A_paths': A_path, 'B_paths': B_path} def __len__(self): return max(self.A_size, self.B_size) def name(self): return 'UnalignedDataset'