import os.path import random import torchvision.transforms as transforms import torch from data.base_dataset import BaseDataset from data.image_folder import make_dataset from PIL import Image class AlignedDataset(BaseDataset): def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_AB = os.path.join(opt.dataroot, opt.phase) self.AB_paths = sorted(make_dataset(self.dir_AB)) assert(opt.resize_or_crop == 'resize_and_crop') transform_list = [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] self.transform = transforms.Compose(transform_list) def __getitem__(self, index): AB_path = self.AB_paths[index] AB = Image.open(AB_path).convert('RGB') AB = AB.resize((self.opt.loadSize * 2, self.opt.loadSize), Image.BICUBIC) AB = self.transform(AB) w_total = AB.size(2) w = int(w_total / 2) h = AB.size(1) w_offset = random.randint(0, max(0, w - self.opt.fineSize - 1)) h_offset = random.randint(0, max(0, h - self.opt.fineSize - 1)) A = AB[:, h_offset:h_offset + self.opt.fineSize, w_offset:w_offset + self.opt.fineSize] B = AB[:, h_offset:h_offset + self.opt.fineSize, w + w_offset:w + w_offset + self.opt.fineSize] if (not self.opt.no_flip) and random.random() < 0.5: idx = [i for i in range(A.size(2) - 1, -1, -1)] idx = torch.LongTensor(idx) A = A.index_select(2, idx) B = B.index_select(2, idx) return {'A': A, 'B': B, 'A_paths': AB_path, 'B_paths': AB_path} def __len__(self): return len(self.AB_paths) def name(self): return 'AlignedDataset'