import torch.utils.data from data.base_data_loader import BaseDataLoader def CreateDataset(opt): dataset = None if opt.dataset_mode == 'aligned': from data.aligned_dataset import AlignedDataset dataset = AlignedDataset() elif opt.dataset_mode == 'unaligned': from data.unaligned_dataset import UnalignedDataset dataset = UnalignedDataset() elif opt.dataset_mode == 'unaligned_random_crop': from data.unaligned_random_crop import UnalignedDataset dataset = UnalignedDataset() elif opt.dataset_mode == 'pair': from data.pair_dataset import PairDataset dataset = PairDataset() elif opt.dataset_mode == 'syn': from data.syn_dataset import PairDataset dataset = PairDataset() elif opt.dataset_mode == 'single': from data.single_dataset import SingleDataset dataset = SingleDataset() else: raise ValueError("Dataset [%s] not recognized." % opt.dataset_mode) print("dataset [%s] was created" % (dataset.name())) dataset.initialize(opt) return dataset class CustomDatasetDataLoader(BaseDataLoader): def name(self): return 'CustomDatasetDataLoader' def initialize(self, opt): BaseDataLoader.initialize(self, opt) self.dataset = CreateDataset(opt) self.dataloader = torch.utils.data.DataLoader( self.dataset, batch_size=opt.batchSize, shuffle=not opt.serial_batches, num_workers=int(opt.nThreads)) def load_data(self): return self.dataloader def __len__(self): return min(len(self.dataset), self.opt.max_dataset_size)