File size: 4,670 Bytes
c7ca3be
 
2317545
 
 
ec80a00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7ca3be
2317545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97c3149
 
 
 
 
 
 
ec80a00
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
license: apache-2.0
datasets:
- databricks/databricks-dolly-15k
- lucasmccabe-lmi/CodeAlpaca-20k
model-index:
- name: Instruct_Yi-6B_Dolly_CodeAlpaca
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 53.16
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Yi-6B_Dolly_CodeAlpaca
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 75.3
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Yi-6B_Dolly_CodeAlpaca
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.06
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Yi-6B_Dolly_CodeAlpaca
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 41.42
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Yi-6B_Dolly_CodeAlpaca
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 75.37
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Yi-6B_Dolly_CodeAlpaca
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 28.35
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Yi-6B_Dolly_CodeAlpaca
      name: Open LLM Leaderboard
---


# Instruct_Yi-6B_Dolly15K
Fine-tuned from Yi-6B, used Dolly15k for the dataset. 90% for training, 10% validation.  Trained for 2.0 epochs using Lora.  Trained with 2048 context window. Compared with https://huggingface.co/HenryJJ/Instruct_Yi-6B_Dolly15K, I add additional CodeAlpaca_20K dataset that good at coding.

# Model Details
* **Trained by**: trained by HenryJJ.
* **Model type:**  **Instruct_Yi-6B_Dolly15K** is an auto-regressive language model based on the Llama 2 transformer architecture.
* **Language(s)**: English
* **License for Instruct_Yi-6B_Dolly15K**: apache-2.0 license


# Prompting

## Prompt Template With Context
<|startoftext|>[INST]{instruction} {context}[/INST]{response}<|endoftext|>

```
<|startoftext|>[INST]
Write a 10-line poem about a given topic
The topic is about racecars
[/INST]
```
## Prompt Template Without Context
```
<|startoftext|>[INST]
Who was the was the second president of the United States?
[/INST]
```

# Training script:
Fully opensourced at: https://github.com/hengjiUSTC/learn-llm/blob/main/trl_finetune.py. Run on aws g4dn.12xlarge instance for 10 hours.

```
python3 trl_finetune.py --config configs/yi_6b-large.yml
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_HenryJJ__Instruct_Yi-6B_Dolly_CodeAlpaca)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |56.11|
|AI2 Reasoning Challenge (25-Shot)|53.16|
|HellaSwag (10-Shot)              |75.30|
|MMLU (5-Shot)                    |63.06|
|TruthfulQA (0-shot)              |41.42|
|Winogrande (5-shot)              |75.37|
|GSM8k (5-shot)                   |28.35|