Switched policy network architecture
Browse files- a2c-PandaPickAndPlace-v3.zip +2 -2
- a2c-PandaPickAndPlace-v3/data +56 -54
- a2c-PandaPickAndPlace-v3/policy.optimizer.pth +2 -2
- a2c-PandaPickAndPlace-v3/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +2 -2
a2c-PandaPickAndPlace-v3.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e42127cfd0f1a3c128d6665034c381647efe8e7f388d86ed811d888c83d49e9d
|
3 |
+
size 4475777
|
a2c-PandaPickAndPlace-v3/data
CHANGED
@@ -11,17 +11,19 @@
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
15 |
-
"net_arch":
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
26 |
"optimizer_kwargs": {
|
27 |
"alpha": 0.99,
|
@@ -29,71 +31,49 @@
|
|
29 |
"weight_decay": 0
|
30 |
}
|
31 |
},
|
32 |
-
"num_timesteps":
|
33 |
"_total_timesteps": 1000000,
|
34 |
"_num_timesteps_at_start": 0,
|
35 |
"seed": null,
|
36 |
"action_noise": null,
|
37 |
-
"start_time":
|
38 |
-
"learning_rate": 0.
|
39 |
"tensorboard_log": null,
|
40 |
"_last_obs": {
|
41 |
":type:": "<class 'collections.OrderedDict'>",
|
42 |
-
":serialized:": "
|
43 |
-
"achieved_goal": "[[-0.
|
44 |
-
"desired_goal": "[[ 0.
|
45 |
-
"observation": "[[
|
46 |
},
|
47 |
"_last_episode_starts": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
-
":serialized:": "
|
50 |
},
|
51 |
"_last_original_obs": {
|
52 |
":type:": "<class 'collections.OrderedDict'>",
|
53 |
-
":serialized:": "
|
54 |
-
"achieved_goal": "[[
|
55 |
-
"desired_goal": "[[
|
56 |
-
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00
|
57 |
},
|
58 |
"_episode_num": 0,
|
59 |
"use_sde": false,
|
60 |
"sde_sample_freq": -1,
|
61 |
-
"_current_progress_remaining":
|
62 |
"_stats_window_size": 100,
|
63 |
"ep_info_buffer": {
|
64 |
":type:": "<class 'collections.deque'>",
|
65 |
-
":serialized:": "
|
66 |
},
|
67 |
"ep_success_buffer": {
|
68 |
":type:": "<class 'collections.deque'>",
|
69 |
-
":serialized:": "
|
70 |
},
|
71 |
-
"_n_updates":
|
72 |
-
"n_steps": 5,
|
73 |
-
"gamma": 0.99,
|
74 |
-
"gae_lambda": 0.95,
|
75 |
-
"ent_coef": 0.0,
|
76 |
-
"vf_coef": 0.5,
|
77 |
-
"max_grad_norm": 0.5,
|
78 |
-
"rollout_buffer_class": {
|
79 |
-
":type:": "<class 'abc.ABCMeta'>",
|
80 |
-
":serialized:": "gAWVOgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwRRGljdFJvbGxvdXRCdWZmZXKUk5Qu",
|
81 |
-
"__module__": "stable_baselines3.common.buffers",
|
82 |
-
"__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray]}",
|
83 |
-
"__doc__": "\n Dict Rollout buffer used in on-policy algorithms like A2C/PPO.\n Extends the RolloutBuffer to use dictionary observations\n\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to Monte-Carlo advantage estimate when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ",
|
84 |
-
"__init__": "<function DictRolloutBuffer.__init__ at 0x7f6794b1ae60>",
|
85 |
-
"reset": "<function DictRolloutBuffer.reset at 0x7f6794b1aef0>",
|
86 |
-
"add": "<function DictRolloutBuffer.add at 0x7f6794b1af80>",
|
87 |
-
"get": "<function DictRolloutBuffer.get at 0x7f6794b1b010>",
|
88 |
-
"_get_samples": "<function DictRolloutBuffer._get_samples at 0x7f6794b1b0a0>",
|
89 |
-
"__abstractmethods__": "frozenset()",
|
90 |
-
"_abc_impl": "<_abc._abc_data object at 0x7f6794b22fc0>"
|
91 |
-
},
|
92 |
-
"rollout_buffer_kwargs": {},
|
93 |
-
"normalize_advantage": false,
|
94 |
"observation_space": {
|
95 |
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
96 |
-
":serialized:": "
|
97 |
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
98 |
"_shape": null,
|
99 |
"dtype": null,
|
@@ -101,7 +81,7 @@
|
|
101 |
},
|
102 |
"action_space": {
|
103 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
104 |
-
":serialized:": "
|
105 |
"dtype": "float32",
|
106 |
"bounded_below": "[ True True True True]",
|
107 |
"bounded_above": "[ True True True True]",
|
@@ -112,11 +92,33 @@
|
|
112 |
"high": "[1. 1. 1. 1.]",
|
113 |
"low_repr": "-1.0",
|
114 |
"high_repr": "1.0",
|
115 |
-
"_np_random":
|
116 |
},
|
117 |
-
"n_envs":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
"lr_schedule": {
|
119 |
":type:": "<class 'function'>",
|
120 |
-
":serialized:": "gAWVsQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgQBlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+
|
121 |
}
|
122 |
}
|
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVsQAAAAAAAAB9lCiMCG5ldF9hcmNolF2UfZQojAJwaZRdlChNAAJNAAJljAJ2ZpRdlChNAAJNAAJldWGMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"net_arch": [
|
16 |
+
{
|
17 |
+
"pi": [
|
18 |
+
512,
|
19 |
+
512
|
20 |
+
],
|
21 |
+
"vf": [
|
22 |
+
512,
|
23 |
+
512
|
24 |
+
]
|
25 |
+
}
|
26 |
+
],
|
27 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
"optimizer_kwargs": {
|
29 |
"alpha": 0.99,
|
|
|
31 |
"weight_decay": 0
|
32 |
}
|
33 |
},
|
34 |
+
"num_timesteps": 1000080,
|
35 |
"_total_timesteps": 1000000,
|
36 |
"_num_timesteps_at_start": 0,
|
37 |
"seed": null,
|
38 |
"action_noise": null,
|
39 |
+
"start_time": 1717617186968720582,
|
40 |
+
"learning_rate": 0.0003,
|
41 |
"tensorboard_log": null,
|
42 |
"_last_obs": {
|
43 |
":type:": "<class 'collections.OrderedDict'>",
|
44 |
+
":serialized:": "gAWVqwUAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolpAAAAAAAAAAy/Zfv4Y42j4l4B4+Qao1v+dfGz1z4B4+EEizvpgsiz5M4R4+VBXEPksSkT+p4h4+Z9Zdv79jqb743R4+7I67Pijriz8l4B4+NzkEvvFXJb5M4R4+qEBSP+ujcT964h4+NDFewC7yJz+F4R4+i8GIv4hn1D4l4B4+P42SPWeAj78l4B4+XgADvDDraj/l4R4+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksMSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolpAAAAAAAAAAUhjzPZlCJ7/wI4m/i5mdP/Fgmb+Vk+u9frDXv17cCD87JKw+0Z91vx2Alz9UeJU/tQ1hv2k4Bj/wI4m/XIlkv3hbyj8uDMw/JAnOv2QWGL/wI4m/Y5YDPuqGVr/wI4m/BZqlP+M/lj7wI4m/LynTvwskvb8djKK84Lihv/XWvT7FsBw/hHAAP+kNJD8EN3c/lGgOSwxLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAMAAAAAAACBo1E/pg78vptCLj4dAMI+DJAKP1GdKD/24HW/y/Zfv4Y42j4l4B4+eJujvHBgyrzFrse8JNbuO5ENfbs6/o499pXNuthv57zndlU7KNEwPwWsUb8X/Um/HHesv6Ru5r/JCty+O81oP0GqNb/nXxs9c+AePpdkpLwElsm8TbWsvCrK4jtXSHC7Ov6OPbSWzbrMb+e8sSR6Owx/TD4jYGM+MQMMv3M92j9YUY0/JuWzve+CkT8QSLO+mCyLPkzhHj74F6S8az7IvIoXwLzEnPU76FR1uzr+jj19lc260W/nvKLibTtjCbg+qvibP9tVcb/V1wi//f+eP+xoST7LGpU/VBXEPksSkT+p4h4+c7GjvJbQyLzv08O8ow3vOxeUgbtdAo89SJvUuk1t57y9CVk7QmlVP7q8Ar8wl8m+y0jJPk5ic79wCk8/ENdCv2fWXb+/Y6m++N0ePvL6obymbMi89FbIvIZ06Ds5mIK7Ov6OPfWVzbrYb+e8q5lUO9ZlOj+NAZA/X5cJvkBPtj+7vsK/OnWgPkwHfr/sjrs+KOuLPyXgHj54m6O8cGDKvNZtx7wi1u47jA19uzr+jj32lc262G/nvPx2VTtHfsM+vztXPIZv174ILca/oSLMPuyIp7+fF3A/NzkEvvFXJb5M4R4+mV+jvF9sybxLMce8mmPnO2oXiLs6/o49XJXNus9v57xkLkQ7Mvi5PmgZAD/qy16/WDI5QAncar8q+ac/igx9v6hAUj/ro3E/euIePo64o7y9rMi8BkAyv8al7jtFuoG7lQmPPTx807q6DOi84n1ZO0OVMD7lf0Q+xldPPpYsCD/Wgc4/WeIFwEgbhz80MV7ALvInP4XhHj5qQ6O8JxTJvPOXQr9Jees7nOmEu+n+jj10wsq6r1DnvFonaztWs1M/egA9voq2Hz6TaLI+XRPOP3PFw7/Qx1s/i8GIv4hn1D4l4B4+eJujvG9gyrw7Sca8G9buO3MNfbs6/o499pXNuthv57xXd1U7+LsRv3QTx7776vy+JXO2P/CoV79WWoa/25WVPz+Nkj1ngI+/JeAePiDXo7w4Qse8pBfGvFVE7zsdRYW7Ov6OPfeVzbrYb+e8Z3dVO/pIXD+y/iY/kTRDv44ujD4fDJI/pkKSPl0Oe79eAAO8MOtqP+XhHj4YUKS8xSLJvB99v7wg++g7si5yu8JQjz20MWe7403xvPIPZDuUaA5LDEsThpRoEnSUUpR1Lg==",
|
45 |
+
"achieved_goal": "[[-0.8748595 0.4262125 0.15515192]\n [-0.7096291 0.03793326 0.15515308]\n [-0.35015917 0.2718246 0.15515631]\n [ 0.38297522 1.1333708 0.15516151]\n [-0.86655277 -0.33083913 0.15514362]\n [ 0.36632478 1.0931139 0.15515192]\n [-0.1291245 -0.16146828 0.15515631]\n [ 0.8212991 0.94390744 0.15516081]\n [-3.4717531 0.6560391 0.15515716]\n [-1.0684065 0.41485238 0.15515192]\n [ 0.07155847 -1.121106 0.15515192]\n [-0.00799569 0.9176512 0.1551586 ]]",
|
46 |
+
"desired_goal": "[[ 0.11869873 -0.65335995 -1.0714092 ]\n [ 1.2312483 -1.1982709 -0.11502758]\n [-1.6850736 0.53461254 0.33621392]\n [-0.95946985 1.1835972 1.1677346 ]\n [-0.8791154 0.52429825 -1.0714092 ]\n [-0.89272094 1.5809164 1.5941217 ]\n [-1.609654 -0.59409165 -1.0714092 ]\n [ 0.12850337 -0.8379961 -1.0714092 ]\n [ 1.2937628 0.29345617 -1.0714092 ]\n [-1.6496943 -1.4776624 -0.0198422 ]\n [-1.2634544 0.37078062 0.6120723 ]\n [ 0.50171685 0.64083725 0.9656832 ]]",
|
47 |
+
"observation": "[[ 8.1890112e-01 -4.9229926e-01 1.7017595e-01 3.7890711e-01\n 5.4126048e-01 6.5865046e-01 -9.6046388e-01 -8.7485951e-01\n 4.2621249e-01 1.5515192e-01 -1.9971594e-02 -2.4704188e-02\n -2.4375329e-02 7.2887111e-03 -3.8612823e-03 6.9820836e-02\n -1.5684951e-03 -2.8251573e-02 3.2572092e-03]\n [ 6.9069147e-01 -8.1903106e-01 -7.8901809e-01 -1.3473849e+00\n -1.8002515e+00 -4.2976978e-01 9.0938157e-01 -7.0962912e-01\n 3.7933256e-02 1.5515308e-01 -2.0067496e-02 -2.4607666e-02\n -2.1082545e-02 6.9210725e-03 -3.6664212e-03 6.9820836e-02\n -1.5685172e-03 -2.8251551e-02 3.8168842e-03]\n [ 1.9970340e-01 2.2204642e-01 -5.4692370e-01 1.7050003e+00\n 1.1040449e+00 -8.7839410e-02 1.1368083e+00 -3.5015917e-01\n 2.7182460e-01 1.5515631e-01 -2.0030960e-02 -2.4443826e-02\n -2.3448724e-02 7.4954946e-03 -3.7434641e-03 6.9820836e-02\n -1.5684810e-03 -2.8251560e-02 3.6298414e-03]\n [ 3.5944661e-01 1.2185261e+00 -9.4271630e-01 -5.3454334e-01\n 1.2421871e+00 1.9668931e-01 1.1648802e+00 3.8297522e-01\n 1.1333708e+00 1.5516151e-01 -1.9982075e-02 -2.4513524e-02\n -2.3904769e-02 7.2953268e-03 -3.9544213e-03 6.9828726e-02\n -1.6220594e-03 -2.8250361e-02 3.3117377e-03]\n [ 8.3363736e-01 -5.1069224e-01 -3.9373159e-01 3.9313349e-01\n -9.5071876e-01 8.0875301e-01 -7.6109409e-01 -8.6655277e-01\n -3.3083913e-01 1.5514362e-01 -1.9772980e-02 -2.4465870e-02\n -2.4455525e-02 7.0939688e-03 -3.9854315e-03 6.9820836e-02\n -1.5684949e-03 -2.8251573e-02 3.2440226e-03]\n [ 7.2811639e-01 1.1250473e+00 -1.3436650e-01 1.4242935e+00\n -1.5214456e+00 3.1339437e-01 -9.9229884e-01 3.6632478e-01\n 1.0931139e+00 1.5515192e-01 -1.9971594e-02 -2.4704188e-02\n -2.4344366e-02 7.2887102e-03 -3.8612811e-03 6.9820836e-02\n -1.5684951e-03 -2.8251573e-02 3.2572141e-03]\n [ 3.8182279e-01 1.3136803e-02 -4.2077273e-01 -1.5482492e+00\n 3.9870170e-01 -1.3088660e+00 9.3786043e-01 -1.2912451e-01\n -1.6146828e-01 1.5515631e-01 -1.9943045e-02 -2.4587808e-02\n -2.4315497e-02 7.0614340e-03 -4.1531818e-03 6.9820836e-02\n -1.5684771e-03 -2.8251557e-02 2.9934878e-03]\n [ 3.6322170e-01 5.0038767e-01 -8.7029898e-01 2.8936977e+00\n -9.1741997e-01 1.3122914e+00 -9.8847258e-01 8.2129908e-01\n 9.4390744e-01 1.5516081e-01 -1.9985463e-02 -2.4496431e-02\n -6.9628942e-01 7.2829453e-03 -3.9589726e-03 6.9842495e-02\n -1.6135047e-03 -2.8326381e-02 3.3186604e-03]\n [ 1.7244439e-01 1.9189413e-01 2.0248327e-01 5.3193033e-01\n 1.6133373e+00 -2.0919402e+00 1.0555201e+00 -3.4717531e+00\n 6.5603912e-01 1.5515716e-01 -1.9929606e-02 -2.4545742e-02\n -7.6013106e-01 7.1860892e-03 -4.0561687e-03 6.9822140e-02\n -1.5469329e-03 -2.8236715e-02 3.5881610e-03]\n [ 8.2695520e-01 -1.8457213e-01 1.5596977e-01 3.4845409e-01\n 1.6099659e+00 -1.5294632e+00 8.5851765e-01 -1.0684065e+00\n 4.1485238e-01 1.5515192e-01 -1.9971594e-02 -2.4704186e-02\n -2.4204841e-02 7.2887070e-03 -3.8612753e-03 6.9820836e-02\n -1.5684951e-03 -2.8251573e-02 3.2572353e-03]\n [-5.6927443e-01 -3.8882029e-01 -4.9398026e-01 1.4253889e+00\n -8.4242153e-01 -1.0496318e+00 1.1686357e+00 7.1558468e-02\n -1.1211060e+00 1.5515192e-01 -2.0000041e-02 -2.4323568e-02\n -2.4181195e-02 7.3018470e-03 -4.0670768e-03 6.9820836e-02\n -1.5684952e-03 -2.8251573e-02 3.2572390e-03]\n [ 8.6048853e-01 6.5232384e-01 -7.6252085e-01 2.7379268e-01\n 1.1409949e+00 2.8566474e-01 -9.8068792e-01 -7.9956930e-03\n 9.1765118e-01 1.5515859e-01 -2.0057723e-02 -2.4552712e-02\n -2.3375092e-02 7.1100146e-03 -3.6954102e-03 6.9978252e-02\n -3.5277428e-03 -2.9456085e-02 3.4799543e-03]]"
|
48 |
},
|
49 |
"_last_episode_starts": {
|
50 |
":type:": "<class 'numpy.ndarray'>",
|
51 |
+
":serialized:": "gAWVfwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLDIWUjAFDlHSUUpQu"
|
52 |
},
|
53 |
"_last_original_obs": {
|
54 |
":type:": "<class 'collections.OrderedDict'>",
|
55 |
+
":serialized:": "gAWVqwUAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolpAAAAAAAAAA9z40PVZjbL0K16M8OyRhvc3sk70K16M8V7dBvTN3jzwK16M8kix8PZWRBL4K16M8bcQtPVnyRDwK16M8qzY2PVKgCj0K16M8E6oFvrpWvr0K16M8CTOUPW6Hkr0K16M8YVVQPP/h270K16M8Tjv7PYvcAj4K16M8RYSNO7QzBb0K16M8PGEEvr5DoT0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksMSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolpAAAAAAAAAAF+DvvGk5LDue0R4+/SI7PWDfFb6rzFM+oXxAvdmbxL1Tngs+QE8GvY3x3TxoSrU8dQhdPagrHrudOiQ+DLg5PT1JVL0K16M89iG4vFpY8D0K16M8ijvEPZnOlT0K16M8R08GPgRY1L0msWo9H+RovdEGZb0K16M8hbCnvQSCgT2ASFY92VxTPVylNT0RHdo9lGgOSwxLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAMAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA9z40PVZjbL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAADskYb3N7JO9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABXt0G9M3ePPArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAkix8PZWRBL4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAG3ELT1Z8kQ8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACrNjY9UqAKPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAE6oFvrpWvr0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAAkzlD1uh5K9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABhVVA8/+HbvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAATjv7PYvcAj4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEWEjTu0MwW9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAA8YQS+vkOhPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LDEsThpRoEnSUUpR1Lg==",
|
56 |
+
"achieved_goal": "[[ 0.04400536 -0.05771192 0.02 ]\n [-0.05496619 -0.07222901 0.02 ]\n [-0.04729399 0.01751289 0.02 ]\n [ 0.06156594 -0.1294616 0.02 ]\n [ 0.04242365 0.01202067 0.02 ]\n [ 0.04448573 0.0338443 0.02 ]\n [-0.1305316 -0.09293886 0.02 ]\n [ 0.07236297 -0.07154737 0.02 ]\n [ 0.01271567 -0.10736465 0.02 ]\n [ 0.12267171 0.12779443 0.02 ]\n [ 0.00431875 -0.03252001 0.02 ]\n [-0.12927717 0.07874249 0.02 ]]",
|
57 |
+
"desired_goal": "[[-0.02928166 0.00262793 0.1550965 ]\n [ 0.04568766 -0.14635992 0.20683543]\n [-0.04699386 -0.09600038 0.13634615]\n [-0.03279042 0.02709272 0.02213021]\n [ 0.05396314 -0.00241349 0.16037984]\n [ 0.04534154 -0.05182766 0.02 ]\n [-0.02247713 0.11735602 0.02 ]\n [ 0.09581669 0.07314796 0.02 ]\n [ 0.1311618 -0.1036835 0.05729785]\n [-0.05685818 -0.0559147 0.02 ]\n [-0.08187965 0.06323627 0.05231524]\n [ 0.05160222 0.04434715 0.10650075]]",
|
58 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.4005360e-02\n -5.7711922e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.4966193e-02\n -7.2229005e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.7293987e-02\n 1.7512893e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.1565943e-02\n -1.2946160e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.2423654e-02\n 1.2020671e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.4485729e-02\n 3.3844300e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.3053159e-01\n -9.2938855e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 7.2362967e-02\n -7.1547374e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2715668e-02\n -1.0736465e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2267171e-01\n 1.2779443e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.3187463e-03\n -3.2520011e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.2927717e-01\n 7.8742489e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
|
59 |
},
|
60 |
"_episode_num": 0,
|
61 |
"use_sde": false,
|
62 |
"sde_sample_freq": -1,
|
63 |
+
"_current_progress_remaining": -8.000000000008001e-05,
|
64 |
"_stats_window_size": 100,
|
65 |
"ep_info_buffer": {
|
66 |
":type:": "<class 'collections.deque'>",
|
67 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHAAAAAAAAAACMAWyUSwGMAXSUR0Cgn7iS7oStdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoDb0nPVvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoH2SU1Q7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgn2OmBOHndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgnx384xUOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoBkcCHRDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoSAZ0jkddX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CgoCposZpBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoB3OGCZndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoLHzH0btdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgobo86mwadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoXiN83MqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoeZGz8gqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgoik4//vOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgoqla0QbudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgowJFCswMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgoed43WFwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoaKMWGh3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgo65NO/L1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgorfjsD4hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgopyAYpDvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgoyy6MBIXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpE11W8yvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgo/91uBMBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpGVcdHUddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpLJiZv1ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpTT0QK8ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpXmzjWCmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpF+XiR4hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpBj3dsSCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgphvCuU2UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpSZCv5gxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpQ5SeiBYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpZY9X9zfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgprb70nPWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpmjZUT+OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgpub7bcoIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgpy13t8eCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgp6t9H+ZPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgp/BUrCm/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgptbmlqJudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgpo3GGVRldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqJjbrTpgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgp6Ma86FNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgp5loUSIydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqCl7tzCDdX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CgqTXYlIEsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqUwlByCGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqQtdqtYCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqXOVX3g2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqbVX3g1ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgqjd7v5P/dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CgqkcPnSv1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqpCjL0SRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqXWK2rn1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqSvsJIDpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqjVZkkKNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqiAOJ+DwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqrdDYywfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgq9xoAXEZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgq/QRPGhmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgq6Ymb9ZSdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cgq7R//echdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrBHkLhJidX2UKGgGR8BGAAAAAAAAaAdLLWgIR0CgrPAaNuLrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrGaWgOBldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrPez2OABdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrBxnvlU7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgq9JTVDrrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrOAGSpzcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrMe3pfQbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrVOkLx7RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrmY//vORdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgrn9dmg8KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrkThYNiIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrrpTER8MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgr4ImPYFrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgrvk3sHB2dX2UKGgGR8AQAAAAAAAAaAdLBWgIR0CgrvWGh24edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgr4nxz7uVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgrqrzf779dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrlbLU1AJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgr19bPhQ4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgr1XaBZp0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgr+68pTdddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsPZf+jubdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsQsFMZgpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsNg7o0Q9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsgP6j323dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsXqGlANYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsW1uzhP1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsgJS75EddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsTP+wTufdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsPCILw4LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgshN/nW8RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsftLUTcqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsoYFaB7NdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgs5BpQDV6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgs5YISlFddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgs07mMfihdWUu"
|
68 |
},
|
69 |
"ep_success_buffer": {
|
70 |
":type:": "<class 'collections.deque'>",
|
71 |
+
":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmIiYmJiYmJiYmJiImIiYmJiYmJiYmJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="
|
72 |
},
|
73 |
+
"_n_updates": 5556,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
"observation_space": {
|
75 |
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
76 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
77 |
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
78 |
"_shape": null,
|
79 |
"dtype": null,
|
|
|
81 |
},
|
82 |
"action_space": {
|
83 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
84 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
85 |
"dtype": "float32",
|
86 |
"bounded_below": "[ True True True True]",
|
87 |
"bounded_above": "[ True True True True]",
|
|
|
92 |
"high": "[1. 1. 1. 1.]",
|
93 |
"low_repr": "-1.0",
|
94 |
"high_repr": "1.0",
|
95 |
+
"_np_random": null
|
96 |
},
|
97 |
+
"n_envs": 12,
|
98 |
+
"n_steps": 15,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.95,
|
101 |
+
"ent_coef": 0.01,
|
102 |
+
"vf_coef": 0.5,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"rollout_buffer_class": {
|
105 |
+
":type:": "<class 'abc.ABCMeta'>",
|
106 |
+
":serialized:": "gAWVOgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwRRGljdFJvbGxvdXRCdWZmZXKUk5Qu",
|
107 |
+
"__module__": "stable_baselines3.common.buffers",
|
108 |
+
"__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray]}",
|
109 |
+
"__doc__": "\n Dict Rollout buffer used in on-policy algorithms like A2C/PPO.\n Extends the RolloutBuffer to use dictionary observations\n\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to Monte-Carlo advantage estimate when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ",
|
110 |
+
"__init__": "<function DictRolloutBuffer.__init__ at 0x7f6794b1ae60>",
|
111 |
+
"reset": "<function DictRolloutBuffer.reset at 0x7f6794b1aef0>",
|
112 |
+
"add": "<function DictRolloutBuffer.add at 0x7f6794b1af80>",
|
113 |
+
"get": "<function DictRolloutBuffer.get at 0x7f6794b1b010>",
|
114 |
+
"_get_samples": "<function DictRolloutBuffer._get_samples at 0x7f6794b1b0a0>",
|
115 |
+
"__abstractmethods__": "frozenset()",
|
116 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f6794b22fc0>"
|
117 |
+
},
|
118 |
+
"rollout_buffer_kwargs": {},
|
119 |
+
"normalize_advantage": false,
|
120 |
"lr_schedule": {
|
121 |
":type:": "<class 'function'>",
|
122 |
+
":serialized:": "gAWVsQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgQBlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCh9lGgqTmgrTmgsaBloLU5oLmgwRz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRV2UaEd9lHWGlIZSMC4="
|
123 |
}
|
124 |
}
|
a2c-PandaPickAndPlace-v3/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7008edb80641178e236a3ea78873fdf84350bcef6317fc19204c1a62e79b0e81
|
3 |
+
size 2222191
|
a2c-PandaPickAndPlace-v3/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:331cfff9e7df71047f1d44725603b9e8fc7366f5434add6a99b1bdb5b955c8c9
|
3 |
+
size 2223471
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f675b1e8dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f675b1ec240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVqgAAAAAAAAB9lCiMCG5ldF9hcmNolH2UKIwCcGmUXZQoS0BLQGWMAnZmlF2UKEtAS0BldYwPb3B0aW1pemVyX2NsYXNzlIwTdG9yY2gub3B0aW0ucm1zcHJvcJSMB1JNU3Byb3CUk5SMEG9wdGltaXplcl9rd2FyZ3OUfZQojAVhbHBoYZRHP++uFHrhR66MA2Vwc5RHPuT4tYjjaPGMDHdlaWdodF9kZWNheZRLAHV1Lg==", "net_arch": {"pi": [64, 64], "vf": [64, 64]}, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717600195231886816, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV4wQAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAAE+JPv4nGNz95ri8++hHrPodeqD8HjS8+i7ULv7TZBz+dry8+h+rLPHygL7+7ri8+9AHMvwH55T2kri8+DplAP7hzBj+7ri8+lvIaPwth+D6Pry8+/r7aPtLmLz5ari8+L2NWP1n7gb/uri8+YrfHPpDxAL5ari8+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAA0lqyPiAm9T1M24E8hgaIPwUlMz/QLBS/6UF4P5/Iab/0cZ0/9nrKP9y1yT+AVzS/7FeOPsWX0j57c4q/8DEVPymQd797c4q/iz7JP7Dg/b57c4q/+rqVvkfVhz8MF8A/bqTlvtbjJL97c4q/MR+Yvx04Xj97c4q/lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW+AIAAAAAAAD0Uw2/5G2uvUlTRL6yFZe+aDYqPuYYTT81rug/E+JPv4nGNz95ri8+6F8RvPf2mrwPLQK9b3k0PbwEw7yyjJ89jR9tPPgzxrw0qSS8h70KPrpRHj9ulgK/ktqovIRItD/r/8U+hJ4fv/oR6z6HXqg/B40vPiGCBrzjFrS8wFTKvyeZZj+w6mhAmBWlPawvozz2W0W9mdWWvwajML8kFuu+LTw/v+eW9D9Bfbs/EYlTvbpApb6LtQu/tNkHP52vLz6ALBG8rsKbvKXAAb1R+jM9MlfCvNy+nz3a+Gw8ffnKvC3rI7xuNji/ncV0vllieL4khghA3vjevrlpgL/qSu0/h+rLPHygL7+7ri8+6FQQvBybm7wjfv68GhAzPR/Pv7yxcZ89meRRPJcw07x13CK823iTvrzRCr+PRElA78JpPjAM476SFRW9icEfv/QBzL8B+eU9pK4vPpksEbyOxOXAp8l8P7LQMz3cv7+8lQWgPfcRTTzT2cy8PXYjvKbYzj6u2tS+TdY5vk/D5L4V52K/BJTkv9zBH78OmUA/uHMGP7uuLz7pVBC8HZubvHp5AL0sEDM9C8+/vLFxnz3T41E86i/TvNbcIrzIVaa+f78ivnHLEL/2h1ZAxq/WP5UUzT+MhKe+lvIaPwth+D6Pry8+yywRvHrbm7yiaAK9TQ40PWZWwrxuwZ89s/RsPBozyryF7SO8V4Bcv+VoX701Cee9bKHxvy7aFr8AIaS/pA/HP/6+2j7S5i8+Wq4vPraSELwEVJy86JYEvXgtMz3/j8O8K7yfPToEbTyXpsq8iEIovJl2/D7Iu3A+92F0vOFWLT9O4Jg/vh9fPy+jH78vY1Y/WfuBv+6uLz7kgRG8GKGcvMLQAr32+zI9jDfBvGcFoD0Ezls8jjnYvNo1JrwDAgg/ugZfvfKlGrvlqry+xD7NP1wd7L/YBqG+YrfHPpDxAL5ari8+xM4RvLVKm7zmvvm8JLk0PefrwLwovJ895gNtPGKmyrwFkh+8lGgOSwpLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.81204337 0.71787316 0.171564 ]\n [ 0.45912153 1.3153847 0.17143641]\n [-0.5457389 0.53066564 0.17156835]\n [ 0.0248921 -0.68604255 0.17156498]\n [-1.5938096 0.11229134 0.17156464]\n [ 0.7523354 0.5252032 0.17156498]\n [ 0.60526407 0.48511538 0.17156814]\n [ 0.4272384 0.17177895 0.17156354]\n [ 0.8374509 -1.015483 0.17156574]\n [ 0.39007097 -0.12592149 0.17156354]]", "desired_goal": "[[ 0.34834915 0.11970162 0.01585164]\n [ 1.0626991 0.6997836 -0.5788088 ]\n [ 0.9697557 -0.9132175 1.2300401 ]\n [ 1.5818775 1.5758624 -0.70446014]\n [ 0.27801454 0.41131416 -1.0816492 ]\n [ 0.58279324 -0.96704346 -1.0816492 ]\n [ 1.5722212 -0.49585485 -1.0816492 ]\n [-0.29244214 1.0611962 1.5007033 ]\n [-0.44852012 -0.6441015 -1.0816492 ]\n [-1.1884519 0.8680437 -1.0816492 ]]", "observation": "[[-5.52062273e-01 -8.51705372e-02 -1.91723958e-01 -2.95087397e-01\n 1.66223168e-01 8.01161170e-01 1.81781638e+00 -8.12043369e-01\n 7.17873156e-01 1.71563998e-01 -8.87296349e-03 -1.89165901e-02\n -3.17812525e-02 4.40611206e-02 -2.38059685e-02 7.79050738e-02\n 1.44728543e-02 -2.41947025e-02 -1.00501068e-02]\n [ 1.35488614e-01 6.18434548e-01 -5.10107875e-01 -2.06120349e-02\n 1.40846300e+00 3.86718124e-01 -6.23512506e-01 4.59121525e-01\n 1.31538475e+00 1.71436414e-01 -8.20973609e-03 -2.19835695e-02\n -1.58071136e+00 9.00774419e-01 3.63932419e+00 8.06075931e-02\n 1.99201927e-02 -4.81834039e-02 -1.17839348e+00]\n [-6.89987540e-01 -4.59153295e-01 -7.47011960e-01 1.91085517e+00\n 1.46475995e+00 -5.16443886e-02 -3.22759449e-01 -5.45738876e-01\n 5.30665636e-01 1.71568349e-01 -8.86070728e-03 -1.90137289e-02\n -3.16778608e-02 4.39398922e-02 -2.37232186e-02 7.80007541e-02\n 1.44636277e-02 -2.47771684e-02 -1.00048007e-02]\n [-7.19580531e-01 -2.39035085e-01 -2.42562667e-01 2.13318729e+00\n -4.35492456e-01 -1.00322640e+00 1.85384870e+00 2.48921048e-02\n -6.86042547e-01 1.71564981e-01 -8.80930573e-03 -1.89948604e-02\n -3.10660060e-02 4.37165275e-02 -2.34141927e-02 7.78535679e-02\n 1.28108496e-02 -2.57800054e-02 -9.94025636e-03]\n [-2.88031429e-01 -5.42262793e-01 3.14480948e+00 2.28282675e-01\n -4.43452358e-01 -3.63975242e-02 -6.24046862e-01 -1.59380960e+00\n 1.12291344e-01 1.71564639e-01 -8.86073057e-03 -7.18024349e+00\n 9.87451971e-01 4.39001992e-02 -2.34069154e-02 7.81356469e-02\n 1.25164902e-02 -2.50062104e-02 -9.97692067e-03]\n [ 4.03996646e-01 -4.15730894e-01 -1.81481555e-01 -4.46802586e-01\n -8.86338532e-01 -1.78576708e+00 -6.24051809e-01 7.52335429e-01\n 5.25203228e-01 1.71564981e-01 -8.80930666e-03 -1.89948622e-02\n -3.13658491e-02 4.37165946e-02 -2.34141555e-02 7.78535679e-02\n 1.28106652e-02 -2.57796831e-02 -9.94034670e-03]\n [-3.24873209e-01 -1.58933625e-01 -5.65604270e-01 3.35204840e+00\n 1.67723918e+00 1.60219061e+00 -3.27183127e-01 6.05264068e-01\n 4.85115379e-01 1.71568140e-01 -8.86077713e-03 -1.90255530e-02\n -3.18380669e-02 4.39589508e-02 -2.37228386e-02 7.80056566e-02\n 1.44626377e-02 -2.46825702e-02 -1.00053595e-02]\n [-8.61333311e-01 -5.45433946e-02 -1.12810530e-01 -1.88773870e+00\n -5.89266658e-01 -1.28225708e+00 1.55516481e+00 4.27238405e-01\n 1.71778947e-01 1.71563536e-01 -8.82404111e-03 -1.90830305e-02\n -3.23704779e-02 4.37445343e-02 -2.38723736e-02 7.79956207e-02\n 1.44663397e-02 -2.47376394e-02 -1.02697685e-02]\n [ 4.93092328e-01 2.35091329e-01 -1.49159348e-02 6.77106917e-01\n 1.19434524e+00 8.71578097e-01 -6.23583734e-01 8.37450922e-01\n -1.01548302e+00 1.71565741e-01 -8.88106599e-03 -1.91197842e-02\n -3.19373682e-02 4.36973199e-02 -2.35860571e-02 7.81353042e-02\n 1.34158172e-02 -2.63946317e-02 -1.01446752e-02]\n [ 5.31280696e-01 -5.44497743e-02 -2.35974463e-03 -3.68491322e-01\n 1.60347795e+00 -1.84464598e+00 -3.14505339e-01 3.90070975e-01\n -1.25921488e-01 1.71563536e-01 -8.89939442e-03 -1.89565215e-02\n -3.04865353e-02 4.41218764e-02 -2.35499870e-02 7.79955983e-02\n 1.44662615e-02 -2.47375406e-02 -9.73940361e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV4wQAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAA+cqju/w/27wK16M8DtzevaLnYr0K16M8W7BHvbChwb0K16M8fVddvQ/JcD0K16M85UWIPfNNHT0K16M8JVX0vAHHvTwK16M8lB9bPGp5BD4K16M8iNIPvm1B+L0K16M804O5vQWVCr4K16M8vGJXvJFieb0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAA65gKPrxIrTun/PM8kOB/PVsIDr7uclo9OkK3PFTX0T1H5EM+m1SKvRv0HryF3w0+tVjkuwux8b0K16M8PJaovU+QDL4K16M8bibqPbjGgj2Q+vo9s23Hve/Biz2JU9I9LUogvetN4D0K16M8NvO+PVEi7L24A7Q9lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW+AIAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA+cqju/w/27wK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAA7c3r2i52K9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABbsEe9sKHBvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAfVddvQ/JcD0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAOVFiD3zTR09CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAlVfS8Ace9PArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAlB9bPGp5BD4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAIjSD75tQfi9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADTg7m9BZUKvgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAvGJXvJFieb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwpLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.00499856 -0.02676391 0.02 ]\n [-0.10881816 -0.05539668 0.02 ]\n [-0.04875217 -0.09454668 0.02 ]\n [-0.05403851 0.05878549 0.02 ]\n [ 0.06653956 0.03840442 0.02 ]\n [-0.02982576 0.02316618 0.02 ]\n [ 0.01337423 0.12936941 0.02 ]\n [-0.14045155 -0.12121854 0.02 ]\n [-0.09058347 -0.13533409 0.02 ]\n [-0.0131461 -0.06088502 0.02 ]]", "desired_goal": "[[ 0.13534896 0.00528821 0.02978356]\n [ 0.06247002 -0.13870375 0.05333226]\n [ 0.02237045 0.10246149 0.1913005 ]\n [-0.06754418 -0.00970175 0.13854797]\n [-0.00696858 -0.11801346 0.02 ]\n [-0.0823178 -0.13726924 0.02 ]\n [ 0.11433111 0.06385559 0.12254822]\n [-0.0973772 0.06824099 0.10269839]\n [-0.03913324 0.10952362 0.02 ]\n [ 0.09323733 -0.11529983 0.08789772]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.9985615e-03\n -2.6763909e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.0881816e-01\n -5.5396684e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.8752170e-02\n -9.4546676e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.4038513e-02\n 5.8785494e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.6539563e-02\n 3.8404416e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -2.9825756e-02\n 2.3166182e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3374228e-02\n 1.2936941e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4045155e-01\n -1.2121854e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.0583466e-02\n -1.3533409e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.3146099e-02\n -6.0885016e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cop2w7DEWJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coqe4RdyDJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoqkhhH9WIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cop4QTVUdadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoqjGdy1eCdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Coqk/4REncdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoqJHUtqYadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coq6wSBbwCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoqbsMRYigdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Coqct5le4TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoqmXH7xd6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CorIzfrKNidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoqpLUb1h9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CorRLadtl7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CorYQb2lEadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoqsHFHavidX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoqtDIJZ4fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CorX/4h2W6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coq8XMpw0gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoruVPva11dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CorQCKaXrudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoraHyEtdzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cor9frrxAjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CordMh5gPVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CosFASvkimdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CosLPva11GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CorgcFyJbddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CosMLpqynldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CorwwZOzppdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CosixlHz6KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CosEmWMS9NdX2UKGgGR8A+AAAAAAAAaAdLH2gIR0Cor96lLvkSdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cor+2JSBK+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CosOUPhAGCdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CosQJq7AcldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CosxLv1DjSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cos5ps41gqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cos/nQhOgydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CosUgFotcwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CotAFs54nndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coskazu4PPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoslYQjD8+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CotWasp5NXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cos4SflIVedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CosynQ6ZH/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CotESvcJt0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cotly88La3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cott2IGhVVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CotzBib2DhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CotHew9q1xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coty1L8JlbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CotYrK/20zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CouJ5UtI07dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CotsBdld1MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CotmGwzLwGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cot2twaR6odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CouXjhDPWydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoufN/4IrwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoukpQ+EAYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cot5TDXOGCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoulenIhhZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CouK0Xxe9jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cou8BgmZ3LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coudyon8badX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CouX+IMz/IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoupSGzru6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CovKI+fRNRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CovUfeLvTgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CovbF5WzWxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Couv+2mYShdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CovbfOD8LsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CovBFPJq7AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Covxt1yNn5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CovTXNC7btdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CovNaSTyJ9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoveSXMQmNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cov/n09QoDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CowIQ2VE/jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CowOBHCoCNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Covi7rcCYDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CowPLR8c+8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cov0Td+G47dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cowk9dmg8KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CowGs5OrQxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CowA0daMaTdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0Cov57QkX1rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CowRqKpDNRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CowytN8E3bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cow6mgi/widX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoxASZBsyjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CowU4JVsDXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoxBHdXT3JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoxW7y6MBIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cow4lenhsJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cowy1ObiIddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CowsAkka/AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoxE1EVnEmdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoxFrtE5QxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coxm3d9Dx9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoxtMtsenydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiImJiYiJiYmJiYmIiYmJiYmJiYmJiYmJiYmIiImIiYmJiYmJiImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmIiYllLg=="}, "_n_updates": 20000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "rollout_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwRRGljdFJvbGxvdXRCdWZmZXKUk5Qu", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Rollout buffer used in on-policy algorithms like A2C/PPO.\n Extends the RolloutBuffer to use dictionary observations\n\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to Monte-Carlo advantage estimate when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ", "__init__": "<function DictRolloutBuffer.__init__ at 0x7f6794b1ae60>", "reset": "<function DictRolloutBuffer.reset at 0x7f6794b1aef0>", "add": "<function DictRolloutBuffer.add at 0x7f6794b1af80>", "get": "<function DictRolloutBuffer.get at 0x7f6794b1b010>", "_get_samples": "<function DictRolloutBuffer._get_samples at 0x7f6794b1b0a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6794b22fc0>"}, "rollout_buffer_kwargs": {}, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVoAUAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoPYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoSIoQvlhfBE/GvG+RUbRIhnJWZ4wDaW5jlIoQu17cW9my+tKEgOdnBbdfRHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPGg/jAVQQ0c2NJRoQoaUUpR9lChoRowFUENHNjSUaEh9lChoSIoRQmSz7ANPhBUUfmtRlCuwyQBoSooR5YjoJdWJKbaDfhSKSXFhtAB1aEtLAGhMSwB1YnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQaBZoGWgcKJYTAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQGUaCBLE4WUaCR0lFKUaCdoHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgsSxOFlGguaBwolkwAAAAAAAAAAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwZRoFksThZRoJHSUUpRoM2gcKJZMAAAAAAAAAAAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLE4WUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8aD+MBVBDRzY0lGhChpRSlH2UKGhGjAVQQ0c2NJRoSH2UKGhIihC78QqAtgy75u2yDiN71UhOaEqKEXGQAdaaT7FLeRdL0MdnvIsAdWhLSwBoTEsAdWJ1YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRn4XfyyTedCpIx3vaYjRu9gCMA2luY5SKEOkeAs7xofL/sM6yWH3RsDR1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 10, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVsQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgQBlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCh9lGgqTmgrTmgsaBloLU5oLmgwRz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRV2UaEd9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Jan 11 04:09:03 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f675b1e8dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f675b1ec240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVsQAAAAAAAAB9lCiMCG5ldF9hcmNolF2UfZQojAJwaZRdlChNAAJNAAJljAJ2ZpRdlChNAAJNAAJldWGMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "net_arch": [{"pi": [512, 512], "vf": [512, 512]}], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000080, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717617186968720582, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVqwUAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolpAAAAAAAAAAy/Zfv4Y42j4l4B4+Qao1v+dfGz1z4B4+EEizvpgsiz5M4R4+VBXEPksSkT+p4h4+Z9Zdv79jqb743R4+7I67Pijriz8l4B4+NzkEvvFXJb5M4R4+qEBSP+ujcT964h4+NDFewC7yJz+F4R4+i8GIv4hn1D4l4B4+P42SPWeAj78l4B4+XgADvDDraj/l4R4+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksMSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolpAAAAAAAAAAUhjzPZlCJ7/wI4m/i5mdP/Fgmb+Vk+u9frDXv17cCD87JKw+0Z91vx2Alz9UeJU/tQ1hv2k4Bj/wI4m/XIlkv3hbyj8uDMw/JAnOv2QWGL/wI4m/Y5YDPuqGVr/wI4m/BZqlP+M/lj7wI4m/LynTvwskvb8djKK84Lihv/XWvT7FsBw/hHAAP+kNJD8EN3c/lGgOSwxLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAMAAAAAAACBo1E/pg78vptCLj4dAMI+DJAKP1GdKD/24HW/y/Zfv4Y42j4l4B4+eJujvHBgyrzFrse8JNbuO5ENfbs6/o499pXNuthv57zndlU7KNEwPwWsUb8X/Um/HHesv6Ru5r/JCty+O81oP0GqNb/nXxs9c+AePpdkpLwElsm8TbWsvCrK4jtXSHC7Ov6OPbSWzbrMb+e8sSR6Owx/TD4jYGM+MQMMv3M92j9YUY0/JuWzve+CkT8QSLO+mCyLPkzhHj74F6S8az7IvIoXwLzEnPU76FR1uzr+jj19lc260W/nvKLibTtjCbg+qvibP9tVcb/V1wi//f+eP+xoST7LGpU/VBXEPksSkT+p4h4+c7GjvJbQyLzv08O8ow3vOxeUgbtdAo89SJvUuk1t57y9CVk7QmlVP7q8Ar8wl8m+y0jJPk5ic79wCk8/ENdCv2fWXb+/Y6m++N0ePvL6obymbMi89FbIvIZ06Ds5mIK7Ov6OPfWVzbrYb+e8q5lUO9ZlOj+NAZA/X5cJvkBPtj+7vsK/OnWgPkwHfr/sjrs+KOuLPyXgHj54m6O8cGDKvNZtx7wi1u47jA19uzr+jj32lc262G/nvPx2VTtHfsM+vztXPIZv174ILca/oSLMPuyIp7+fF3A/NzkEvvFXJb5M4R4+mV+jvF9sybxLMce8mmPnO2oXiLs6/o49XJXNus9v57xkLkQ7Mvi5PmgZAD/qy16/WDI5QAncar8q+ac/igx9v6hAUj/ro3E/euIePo64o7y9rMi8BkAyv8al7jtFuoG7lQmPPTx807q6DOi84n1ZO0OVMD7lf0Q+xldPPpYsCD/Wgc4/WeIFwEgbhz80MV7ALvInP4XhHj5qQ6O8JxTJvPOXQr9Jees7nOmEu+n+jj10wsq6r1DnvFonaztWs1M/egA9voq2Hz6TaLI+XRPOP3PFw7/Qx1s/i8GIv4hn1D4l4B4+eJujvG9gyrw7Sca8G9buO3MNfbs6/o499pXNuthv57xXd1U7+LsRv3QTx7776vy+JXO2P/CoV79WWoa/25WVPz+Nkj1ngI+/JeAePiDXo7w4Qse8pBfGvFVE7zsdRYW7Ov6OPfeVzbrYb+e8Z3dVO/pIXD+y/iY/kTRDv44ujD4fDJI/pkKSPl0Oe79eAAO8MOtqP+XhHj4YUKS8xSLJvB99v7wg++g7si5yu8JQjz20MWe7403xvPIPZDuUaA5LDEsThpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.8748595 0.4262125 0.15515192]\n [-0.7096291 0.03793326 0.15515308]\n [-0.35015917 0.2718246 0.15515631]\n [ 0.38297522 1.1333708 0.15516151]\n [-0.86655277 -0.33083913 0.15514362]\n [ 0.36632478 1.0931139 0.15515192]\n [-0.1291245 -0.16146828 0.15515631]\n [ 0.8212991 0.94390744 0.15516081]\n [-3.4717531 0.6560391 0.15515716]\n [-1.0684065 0.41485238 0.15515192]\n [ 0.07155847 -1.121106 0.15515192]\n [-0.00799569 0.9176512 0.1551586 ]]", "desired_goal": "[[ 0.11869873 -0.65335995 -1.0714092 ]\n [ 1.2312483 -1.1982709 -0.11502758]\n [-1.6850736 0.53461254 0.33621392]\n [-0.95946985 1.1835972 1.1677346 ]\n [-0.8791154 0.52429825 -1.0714092 ]\n [-0.89272094 1.5809164 1.5941217 ]\n [-1.609654 -0.59409165 -1.0714092 ]\n [ 0.12850337 -0.8379961 -1.0714092 ]\n [ 1.2937628 0.29345617 -1.0714092 ]\n [-1.6496943 -1.4776624 -0.0198422 ]\n [-1.2634544 0.37078062 0.6120723 ]\n [ 0.50171685 0.64083725 0.9656832 ]]", "observation": "[[ 8.1890112e-01 -4.9229926e-01 1.7017595e-01 3.7890711e-01\n 5.4126048e-01 6.5865046e-01 -9.6046388e-01 -8.7485951e-01\n 4.2621249e-01 1.5515192e-01 -1.9971594e-02 -2.4704188e-02\n -2.4375329e-02 7.2887111e-03 -3.8612823e-03 6.9820836e-02\n -1.5684951e-03 -2.8251573e-02 3.2572092e-03]\n [ 6.9069147e-01 -8.1903106e-01 -7.8901809e-01 -1.3473849e+00\n -1.8002515e+00 -4.2976978e-01 9.0938157e-01 -7.0962912e-01\n 3.7933256e-02 1.5515308e-01 -2.0067496e-02 -2.4607666e-02\n -2.1082545e-02 6.9210725e-03 -3.6664212e-03 6.9820836e-02\n -1.5685172e-03 -2.8251551e-02 3.8168842e-03]\n [ 1.9970340e-01 2.2204642e-01 -5.4692370e-01 1.7050003e+00\n 1.1040449e+00 -8.7839410e-02 1.1368083e+00 -3.5015917e-01\n 2.7182460e-01 1.5515631e-01 -2.0030960e-02 -2.4443826e-02\n -2.3448724e-02 7.4954946e-03 -3.7434641e-03 6.9820836e-02\n -1.5684810e-03 -2.8251560e-02 3.6298414e-03]\n [ 3.5944661e-01 1.2185261e+00 -9.4271630e-01 -5.3454334e-01\n 1.2421871e+00 1.9668931e-01 1.1648802e+00 3.8297522e-01\n 1.1333708e+00 1.5516151e-01 -1.9982075e-02 -2.4513524e-02\n -2.3904769e-02 7.2953268e-03 -3.9544213e-03 6.9828726e-02\n -1.6220594e-03 -2.8250361e-02 3.3117377e-03]\n [ 8.3363736e-01 -5.1069224e-01 -3.9373159e-01 3.9313349e-01\n -9.5071876e-01 8.0875301e-01 -7.6109409e-01 -8.6655277e-01\n -3.3083913e-01 1.5514362e-01 -1.9772980e-02 -2.4465870e-02\n -2.4455525e-02 7.0939688e-03 -3.9854315e-03 6.9820836e-02\n -1.5684949e-03 -2.8251573e-02 3.2440226e-03]\n [ 7.2811639e-01 1.1250473e+00 -1.3436650e-01 1.4242935e+00\n -1.5214456e+00 3.1339437e-01 -9.9229884e-01 3.6632478e-01\n 1.0931139e+00 1.5515192e-01 -1.9971594e-02 -2.4704188e-02\n -2.4344366e-02 7.2887102e-03 -3.8612811e-03 6.9820836e-02\n -1.5684951e-03 -2.8251573e-02 3.2572141e-03]\n [ 3.8182279e-01 1.3136803e-02 -4.2077273e-01 -1.5482492e+00\n 3.9870170e-01 -1.3088660e+00 9.3786043e-01 -1.2912451e-01\n -1.6146828e-01 1.5515631e-01 -1.9943045e-02 -2.4587808e-02\n -2.4315497e-02 7.0614340e-03 -4.1531818e-03 6.9820836e-02\n -1.5684771e-03 -2.8251557e-02 2.9934878e-03]\n [ 3.6322170e-01 5.0038767e-01 -8.7029898e-01 2.8936977e+00\n -9.1741997e-01 1.3122914e+00 -9.8847258e-01 8.2129908e-01\n 9.4390744e-01 1.5516081e-01 -1.9985463e-02 -2.4496431e-02\n -6.9628942e-01 7.2829453e-03 -3.9589726e-03 6.9842495e-02\n -1.6135047e-03 -2.8326381e-02 3.3186604e-03]\n [ 1.7244439e-01 1.9189413e-01 2.0248327e-01 5.3193033e-01\n 1.6133373e+00 -2.0919402e+00 1.0555201e+00 -3.4717531e+00\n 6.5603912e-01 1.5515716e-01 -1.9929606e-02 -2.4545742e-02\n -7.6013106e-01 7.1860892e-03 -4.0561687e-03 6.9822140e-02\n -1.5469329e-03 -2.8236715e-02 3.5881610e-03]\n [ 8.2695520e-01 -1.8457213e-01 1.5596977e-01 3.4845409e-01\n 1.6099659e+00 -1.5294632e+00 8.5851765e-01 -1.0684065e+00\n 4.1485238e-01 1.5515192e-01 -1.9971594e-02 -2.4704186e-02\n -2.4204841e-02 7.2887070e-03 -3.8612753e-03 6.9820836e-02\n -1.5684951e-03 -2.8251573e-02 3.2572353e-03]\n [-5.6927443e-01 -3.8882029e-01 -4.9398026e-01 1.4253889e+00\n -8.4242153e-01 -1.0496318e+00 1.1686357e+00 7.1558468e-02\n -1.1211060e+00 1.5515192e-01 -2.0000041e-02 -2.4323568e-02\n -2.4181195e-02 7.3018470e-03 -4.0670768e-03 6.9820836e-02\n -1.5684952e-03 -2.8251573e-02 3.2572390e-03]\n [ 8.6048853e-01 6.5232384e-01 -7.6252085e-01 2.7379268e-01\n 1.1409949e+00 2.8566474e-01 -9.8068792e-01 -7.9956930e-03\n 9.1765118e-01 1.5515859e-01 -2.0057723e-02 -2.4552712e-02\n -2.3375092e-02 7.1100146e-03 -3.6954102e-03 6.9978252e-02\n -3.5277428e-03 -2.9456085e-02 3.4799543e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLDIWUjAFDlHSUUpQu"}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVqwUAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolpAAAAAAAAAA9z40PVZjbL0K16M8OyRhvc3sk70K16M8V7dBvTN3jzwK16M8kix8PZWRBL4K16M8bcQtPVnyRDwK16M8qzY2PVKgCj0K16M8E6oFvrpWvr0K16M8CTOUPW6Hkr0K16M8YVVQPP/h270K16M8Tjv7PYvcAj4K16M8RYSNO7QzBb0K16M8PGEEvr5DoT0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksMSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolpAAAAAAAAAAF+DvvGk5LDue0R4+/SI7PWDfFb6rzFM+oXxAvdmbxL1Tngs+QE8GvY3x3TxoSrU8dQhdPagrHrudOiQ+DLg5PT1JVL0K16M89iG4vFpY8D0K16M8ijvEPZnOlT0K16M8R08GPgRY1L0msWo9H+RovdEGZb0K16M8hbCnvQSCgT2ASFY92VxTPVylNT0RHdo9lGgOSwxLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAMAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA9z40PVZjbL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAADskYb3N7JO9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABXt0G9M3ePPArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAkix8PZWRBL4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAG3ELT1Z8kQ8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACrNjY9UqAKPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAE6oFvrpWvr0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAAkzlD1uh5K9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABhVVA8/+HbvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAATjv7PYvcAj4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEWEjTu0MwW9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAA8YQS+vkOhPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LDEsThpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.04400536 -0.05771192 0.02 ]\n [-0.05496619 -0.07222901 0.02 ]\n [-0.04729399 0.01751289 0.02 ]\n [ 0.06156594 -0.1294616 0.02 ]\n [ 0.04242365 0.01202067 0.02 ]\n [ 0.04448573 0.0338443 0.02 ]\n [-0.1305316 -0.09293886 0.02 ]\n [ 0.07236297 -0.07154737 0.02 ]\n [ 0.01271567 -0.10736465 0.02 ]\n [ 0.12267171 0.12779443 0.02 ]\n [ 0.00431875 -0.03252001 0.02 ]\n [-0.12927717 0.07874249 0.02 ]]", "desired_goal": "[[-0.02928166 0.00262793 0.1550965 ]\n [ 0.04568766 -0.14635992 0.20683543]\n [-0.04699386 -0.09600038 0.13634615]\n [-0.03279042 0.02709272 0.02213021]\n [ 0.05396314 -0.00241349 0.16037984]\n [ 0.04534154 -0.05182766 0.02 ]\n [-0.02247713 0.11735602 0.02 ]\n [ 0.09581669 0.07314796 0.02 ]\n [ 0.1311618 -0.1036835 0.05729785]\n [-0.05685818 -0.0559147 0.02 ]\n [-0.08187965 0.06323627 0.05231524]\n [ 0.05160222 0.04434715 0.10650075]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.4005360e-02\n -5.7711922e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.4966193e-02\n -7.2229005e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.7293987e-02\n 1.7512893e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.1565943e-02\n -1.2946160e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.2423654e-02\n 1.2020671e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.4485729e-02\n 3.3844300e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.3053159e-01\n -9.2938855e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 7.2362967e-02\n -7.1547374e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2715668e-02\n -1.0736465e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2267171e-01\n 1.2779443e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.3187463e-03\n -3.2520011e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.2927717e-01\n 7.8742489e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -8.000000000008001e-05, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHAAAAAAAAAACMAWyUSwGMAXSUR0Cgn7iS7oStdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoDb0nPVvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoH2SU1Q7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgn2OmBOHndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgnx384xUOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoBkcCHRDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoSAZ0jkddX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CgoCposZpBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoB3OGCZndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoLHzH0btdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgobo86mwadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoXiN83MqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoeZGz8gqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgoik4//vOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgoqla0QbudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgowJFCswMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgoed43WFwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoaKMWGh3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgo65NO/L1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgorfjsD4hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgopyAYpDvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgoyy6MBIXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpE11W8yvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgo/91uBMBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpGVcdHUddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpLJiZv1ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpTT0QK8ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpXmzjWCmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpF+XiR4hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpBj3dsSCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgphvCuU2UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpSZCv5gxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpQ5SeiBYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpZY9X9zfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgprb70nPWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpmjZUT+OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgpub7bcoIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgpy13t8eCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgp6t9H+ZPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgp/BUrCm/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgptbmlqJudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgpo3GGVRldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqJjbrTpgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgp6Ma86FNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgp5loUSIydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqCl7tzCDdX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CgqTXYlIEsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqUwlByCGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqQtdqtYCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqXOVX3g2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqbVX3g1ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgqjd7v5P/dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CgqkcPnSv1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqpCjL0SRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqXWK2rn1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqSvsJIDpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqjVZkkKNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqiAOJ+DwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqrdDYywfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgq9xoAXEZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgq/QRPGhmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgq6Ymb9ZSdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cgq7R//echdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrBHkLhJidX2UKGgGR8BGAAAAAAAAaAdLLWgIR0CgrPAaNuLrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrGaWgOBldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrPez2OABdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrBxnvlU7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgq9JTVDrrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrOAGSpzcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrMe3pfQbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrVOkLx7RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrmY//vORdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgrn9dmg8KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrkThYNiIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrrpTER8MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgr4ImPYFrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgrvk3sHB2dX2UKGgGR8AQAAAAAAAAaAdLBWgIR0CgrvWGh24edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgr4nxz7uVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgrqrzf779dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrlbLU1AJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgr19bPhQ4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgr1XaBZp0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgr+68pTdddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsPZf+jubdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsQsFMZgpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsNg7o0Q9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsgP6j323dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsXqGlANYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsW1uzhP1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsgJS75EddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsTP+wTufdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsPCILw4LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgshN/nW8RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsftLUTcqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsoYFaB7NdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgs5BpQDV6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgs5YISlFddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgs07mMfihdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmIiYmJiYmJiYmJiImIiYmJiYmJiYmJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="}, "_n_updates": 5556, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 12, "n_steps": 15, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "rollout_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwRRGljdFJvbGxvdXRCdWZmZXKUk5Qu", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Rollout buffer used in on-policy algorithms like A2C/PPO.\n Extends the RolloutBuffer to use dictionary observations\n\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to Monte-Carlo advantage estimate when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ", "__init__": "<function DictRolloutBuffer.__init__ at 0x7f6794b1ae60>", "reset": "<function DictRolloutBuffer.reset at 0x7f6794b1aef0>", "add": "<function DictRolloutBuffer.add at 0x7f6794b1af80>", "get": "<function DictRolloutBuffer.get at 0x7f6794b1b010>", "_get_samples": "<function DictRolloutBuffer._get_samples at 0x7f6794b1b0a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6794b22fc0>"}, "rollout_buffer_kwargs": {}, "normalize_advantage": false, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVsQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgQBlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCh9lGgqTmgrTmgsaBloLU5oLmgwRz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRV2UaEd9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Jan 11 04:09:03 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-
|
|
|
1 |
+
{"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-05T22:33:47.255071"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b185b4da4d7d105aaf88271e3847e314f7b2845e91c2d9447d50fa711ee8c35
|
3 |
+
size 3092
|