Hgkang00 commited on
Commit
f50d6f2
·
verified ·
1 Parent(s): ad248e1

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,485 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:10K<n<100K
9
+ - loss:CoSENTLoss
10
+ base_model: sentence-transformers/all-MiniLM-L6-v2
11
+ metrics:
12
+ - pearson_cosine
13
+ - spearman_cosine
14
+ - pearson_manhattan
15
+ - spearman_manhattan
16
+ - pearson_euclidean
17
+ - spearman_euclidean
18
+ - pearson_dot
19
+ - spearman_dot
20
+ - pearson_max
21
+ - spearman_max
22
+ widget:
23
+ - source_sentence: Driving or commuting to work feels draining, even if it's a short
24
+ distance.
25
+ sentences:
26
+ - Symptoms during a manic episode include decreased need for sleep, more talkative
27
+ than usual, flight of ideas, distractibility
28
+ - I feel like I have lost a part of myself since the traumatic event, and I struggle
29
+ to connect with others on a deeper level.
30
+ - Diagnosis requires at least one hypomanic episode and one major depressive episode.
31
+ - source_sentence: I felt like my thoughts were disconnected and chaotic during a
32
+ manic episode.
33
+ sentences:
34
+ - Diagnosis requires one or more manic episodes, which may be preceded or followed
35
+ by hypomanic or major depressive episodes.
36
+ - I feel like I have lost a part of myself since the traumatic event, and I struggle
37
+ to connect with others on a deeper level.
38
+ - Depressed mood for most of the day, for more days than not, as indicated by subjective
39
+ account or observation, for at least 2 years.
40
+ - source_sentence: My insomnia has caused me to experience frequent headaches and
41
+ muscle soreness.
42
+ sentences:
43
+ - Insomnia or hypersomnia nearly every day.
44
+ - I have difficulty standing in long lines at the grocery store or the bank due
45
+ to the fear of feeling trapped or overwhelmed.
46
+ - Diagnosis requires at least one hypomanic episode and one major depressive episode.
47
+ - source_sentence: The phobic object or situation almost always provokes immediate
48
+ fear or anxiety.
49
+ sentences:
50
+ - The agoraphobic situations almost always provoke fear or anxiety.
51
+ - I have difficulty standing in long lines at the grocery store or the bank due
52
+ to the fear of feeling trapped or overwhelmed.
53
+ - Exclusion of schizoaffective disorder and depressive or bipolar disorder with
54
+ psychotic features, based on the absence of concurrent depressive or manic episodes
55
+ during the active-phase symptoms, or these mood episodes being present for a minority
56
+ of the total duration of the active and residual phases.
57
+ - source_sentence: I engage in risky behaviors like reckless driving or reckless sexual
58
+ encounters.
59
+ sentences:
60
+ - Symptoms during a manic episode include inflated self-esteem or grandiosity,increased
61
+ goal-directed activity, or excessive involvement in risky activities.
62
+ - Marked decrease in functioning in areas like work, interpersonal relations, or
63
+ self-care since the onset of the disturbance.
64
+ - During the specified period, symptoms from Criterion A are present at least half
65
+ the time with no symptom-free interval lasting longer than 2 months.
66
+ pipeline_tag: sentence-similarity
67
+ model-index:
68
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
69
+ results:
70
+ - task:
71
+ type: semantic-similarity
72
+ name: Semantic Similarity
73
+ dataset:
74
+ name: FT label
75
+ type: FT_label
76
+ metrics:
77
+ - type: pearson_cosine
78
+ value: 0.4627701543833943
79
+ name: Pearson Cosine
80
+ - type: spearman_cosine
81
+ value: 0.4076356119364853
82
+ name: Spearman Cosine
83
+ - type: pearson_manhattan
84
+ value: 0.48164714740150605
85
+ name: Pearson Manhattan
86
+ - type: spearman_manhattan
87
+ value: 0.406731043246377
88
+ name: Spearman Manhattan
89
+ - type: pearson_euclidean
90
+ value: 0.4840582172096936
91
+ name: Pearson Euclidean
92
+ - type: spearman_euclidean
93
+ value: 0.407636256115058
94
+ name: Spearman Euclidean
95
+ - type: pearson_dot
96
+ value: 0.46277015122653486
97
+ name: Pearson Dot
98
+ - type: spearman_dot
99
+ value: 0.4076359510487126
100
+ name: Spearman Dot
101
+ - type: pearson_max
102
+ value: 0.4840582172096936
103
+ name: Pearson Max
104
+ - type: spearman_max
105
+ value: 0.407636256115058
106
+ name: Spearman Max
107
+ ---
108
+
109
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
110
+
111
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
112
+
113
+ ## Model Details
114
+
115
+ ### Model Description
116
+ - **Model Type:** Sentence Transformer
117
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision e4ce9877abf3edfe10b0d82785e83bdcb973e22e -->
118
+ - **Maximum Sequence Length:** 256 tokens
119
+ - **Output Dimensionality:** 384 tokens
120
+ - **Similarity Function:** Cosine Similarity
121
+ <!-- - **Training Dataset:** Unknown -->
122
+ <!-- - **Language:** Unknown -->
123
+ <!-- - **License:** Unknown -->
124
+
125
+ ### Model Sources
126
+
127
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
128
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
129
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
130
+
131
+ ### Full Model Architecture
132
+
133
+ ```
134
+ SentenceTransformer(
135
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
136
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
137
+ (2): Normalize()
138
+ )
139
+ ```
140
+
141
+ ## Usage
142
+
143
+ ### Direct Usage (Sentence Transformers)
144
+
145
+ First install the Sentence Transformers library:
146
+
147
+ ```bash
148
+ pip install -U sentence-transformers
149
+ ```
150
+
151
+ Then you can load this model and run inference.
152
+ ```python
153
+ from sentence_transformers import SentenceTransformer
154
+
155
+ # Download from the 🤗 Hub
156
+ model = SentenceTransformer("Hgkang00/FT-label-consent-20")
157
+ # Run inference
158
+ sentences = [
159
+ 'I engage in risky behaviors like reckless driving or reckless sexual encounters.',
160
+ 'Symptoms during a manic episode include inflated self-esteem or grandiosity,increased goal-directed activity, or excessive involvement in risky activities.',
161
+ 'Marked decrease in functioning in areas like work, interpersonal relations, or self-care since the onset of the disturbance.',
162
+ ]
163
+ embeddings = model.encode(sentences)
164
+ print(embeddings.shape)
165
+ # [3, 384]
166
+
167
+ # Get the similarity scores for the embeddings
168
+ similarities = model.similarity(embeddings, embeddings)
169
+ print(similarities.shape)
170
+ # [3, 3]
171
+ ```
172
+
173
+ <!--
174
+ ### Direct Usage (Transformers)
175
+
176
+ <details><summary>Click to see the direct usage in Transformers</summary>
177
+
178
+ </details>
179
+ -->
180
+
181
+ <!--
182
+ ### Downstream Usage (Sentence Transformers)
183
+
184
+ You can finetune this model on your own dataset.
185
+
186
+ <details><summary>Click to expand</summary>
187
+
188
+ </details>
189
+ -->
190
+
191
+ <!--
192
+ ### Out-of-Scope Use
193
+
194
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
195
+ -->
196
+
197
+ ## Evaluation
198
+
199
+ ### Metrics
200
+
201
+ #### Semantic Similarity
202
+ * Dataset: `FT_label`
203
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
204
+
205
+ | Metric | Value |
206
+ |:--------------------|:-----------|
207
+ | pearson_cosine | 0.4628 |
208
+ | **spearman_cosine** | **0.4076** |
209
+ | pearson_manhattan | 0.4816 |
210
+ | spearman_manhattan | 0.4067 |
211
+ | pearson_euclidean | 0.4841 |
212
+ | spearman_euclidean | 0.4076 |
213
+ | pearson_dot | 0.4628 |
214
+ | spearman_dot | 0.4076 |
215
+ | pearson_max | 0.4841 |
216
+ | spearman_max | 0.4076 |
217
+
218
+ <!--
219
+ ## Bias, Risks and Limitations
220
+
221
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
222
+ -->
223
+
224
+ <!--
225
+ ### Recommendations
226
+
227
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
228
+ -->
229
+
230
+ ## Training Details
231
+
232
+ ### Training Dataset
233
+
234
+ #### Unnamed Dataset
235
+
236
+
237
+ * Size: 33,800 training samples
238
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
239
+ * Approximate statistics based on the first 1000 samples:
240
+ | | sentence1 | sentence2 | score |
241
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
242
+ | type | string | string | float |
243
+ | details | <ul><li>min: 11 tokens</li><li>mean: 31.63 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 25.22 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: -1.0</li><li>mean: -0.87</li><li>max: 1.0</li></ul> |
244
+ * Samples:
245
+ | sentence1 | sentence2 | score |
246
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
247
+ | <code>Presence of one or more of the following intrusion symptoms associated with the traumatic event: recurrent distressing memories, dreams, flashbacks, psychological distress, or physiological reactions to cues of the traumatic event.</code> | <code>I avoid making phone calls, even to close friends or family, because I'm afraid of saying something wrong or sounding awkward.</code> | <code>0.0</code> |
248
+ | <code>The phobic object or situation almost always provokes immediate fear or anxiety.</code> | <code>I find it hard to stick to a consistent eating schedule, sometimes going days without feeling the need to eat at all.</code> | <code>-1.0</code> |
249
+ | <code>The fear or anxiety is out of proportion to the actual danger posed by the specific object or situation and to the sociocultural context.</code> | <code>I have difficulty going to places where I feel there are no immediate exits, such as cinemas or auditoriums, as the fear of being stuck or unable to escape escalates my anxiety.</code> | <code>-1.0</code> |
250
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
251
+ ```json
252
+ {
253
+ "scale": 20.0,
254
+ "similarity_fct": "pairwise_cos_sim"
255
+ }
256
+ ```
257
+
258
+ ### Evaluation Dataset
259
+
260
+ #### Unnamed Dataset
261
+
262
+
263
+ * Size: 4,225 evaluation samples
264
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
265
+ * Approximate statistics based on the first 1000 samples:
266
+ | | sentence1 | sentence2 | score |
267
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
268
+ | type | string | string | float |
269
+ | details | <ul><li>min: 11 tokens</li><li>mean: 31.24 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 24.86 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: -1.0</li><li>mean: -0.87</li><li>max: 1.0</li></ul> |
270
+ * Samples:
271
+ | sentence1 | sentence2 | score |
272
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------|:------------------|
273
+ | <code>Excessive anxiety and worry occurring more days than not for at least 6 months, about a number of events or activities such as work or school performance.</code> | <code>Simple activities like going for a walk or doing household chores feel like daunting tasks due to my low energy levels.</code> | <code>-1.0</code> |
274
+ | <code>The individual fears acting in a way or showing anxiety symptoms that will be negatively evaluated, leading to humiliation, embarrassment, rejection, or offense to others.</code> | <code>I often find myself mindlessly snacking throughout the day due to changes in my appetite.</code> | <code>-1.0</code> |
275
+ | <code>Persistent avoidance of stimuli associated with the trauma, evidenced by avoiding distressing memories, thoughts, or feelings, or external reminders of the event.</code> | <code>Simple activities like going for a walk or doing household chores feel like daunting tasks due to my low energy levels.</code> | <code>-1.0</code> |
276
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
277
+ ```json
278
+ {
279
+ "scale": 20.0,
280
+ "similarity_fct": "pairwise_cos_sim"
281
+ }
282
+ ```
283
+
284
+ ### Training Hyperparameters
285
+ #### Non-Default Hyperparameters
286
+
287
+ - `eval_strategy`: epoch
288
+ - `per_device_train_batch_size`: 128
289
+ - `per_device_eval_batch_size`: 128
290
+ - `num_train_epochs`: 20
291
+ - `warmup_ratio`: 0.1
292
+
293
+ #### All Hyperparameters
294
+ <details><summary>Click to expand</summary>
295
+
296
+ - `overwrite_output_dir`: False
297
+ - `do_predict`: False
298
+ - `eval_strategy`: epoch
299
+ - `prediction_loss_only`: True
300
+ - `per_device_train_batch_size`: 128
301
+ - `per_device_eval_batch_size`: 128
302
+ - `per_gpu_train_batch_size`: None
303
+ - `per_gpu_eval_batch_size`: None
304
+ - `gradient_accumulation_steps`: 1
305
+ - `eval_accumulation_steps`: None
306
+ - `learning_rate`: 5e-05
307
+ - `weight_decay`: 0.0
308
+ - `adam_beta1`: 0.9
309
+ - `adam_beta2`: 0.999
310
+ - `adam_epsilon`: 1e-08
311
+ - `max_grad_norm`: 1.0
312
+ - `num_train_epochs`: 20
313
+ - `max_steps`: -1
314
+ - `lr_scheduler_type`: linear
315
+ - `lr_scheduler_kwargs`: {}
316
+ - `warmup_ratio`: 0.1
317
+ - `warmup_steps`: 0
318
+ - `log_level`: passive
319
+ - `log_level_replica`: warning
320
+ - `log_on_each_node`: True
321
+ - `logging_nan_inf_filter`: True
322
+ - `save_safetensors`: True
323
+ - `save_on_each_node`: False
324
+ - `save_only_model`: False
325
+ - `restore_callback_states_from_checkpoint`: False
326
+ - `no_cuda`: False
327
+ - `use_cpu`: False
328
+ - `use_mps_device`: False
329
+ - `seed`: 42
330
+ - `data_seed`: None
331
+ - `jit_mode_eval`: False
332
+ - `use_ipex`: False
333
+ - `bf16`: False
334
+ - `fp16`: False
335
+ - `fp16_opt_level`: O1
336
+ - `half_precision_backend`: auto
337
+ - `bf16_full_eval`: False
338
+ - `fp16_full_eval`: False
339
+ - `tf32`: None
340
+ - `local_rank`: 0
341
+ - `ddp_backend`: None
342
+ - `tpu_num_cores`: None
343
+ - `tpu_metrics_debug`: False
344
+ - `debug`: []
345
+ - `dataloader_drop_last`: False
346
+ - `dataloader_num_workers`: 0
347
+ - `dataloader_prefetch_factor`: None
348
+ - `past_index`: -1
349
+ - `disable_tqdm`: False
350
+ - `remove_unused_columns`: True
351
+ - `label_names`: None
352
+ - `load_best_model_at_end`: False
353
+ - `ignore_data_skip`: False
354
+ - `fsdp`: []
355
+ - `fsdp_min_num_params`: 0
356
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
357
+ - `fsdp_transformer_layer_cls_to_wrap`: None
358
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
359
+ - `deepspeed`: None
360
+ - `label_smoothing_factor`: 0.0
361
+ - `optim`: adamw_torch
362
+ - `optim_args`: None
363
+ - `adafactor`: False
364
+ - `group_by_length`: False
365
+ - `length_column_name`: length
366
+ - `ddp_find_unused_parameters`: None
367
+ - `ddp_bucket_cap_mb`: None
368
+ - `ddp_broadcast_buffers`: False
369
+ - `dataloader_pin_memory`: True
370
+ - `dataloader_persistent_workers`: False
371
+ - `skip_memory_metrics`: True
372
+ - `use_legacy_prediction_loop`: False
373
+ - `push_to_hub`: False
374
+ - `resume_from_checkpoint`: None
375
+ - `hub_model_id`: None
376
+ - `hub_strategy`: every_save
377
+ - `hub_private_repo`: False
378
+ - `hub_always_push`: False
379
+ - `gradient_checkpointing`: False
380
+ - `gradient_checkpointing_kwargs`: None
381
+ - `include_inputs_for_metrics`: False
382
+ - `eval_do_concat_batches`: True
383
+ - `fp16_backend`: auto
384
+ - `push_to_hub_model_id`: None
385
+ - `push_to_hub_organization`: None
386
+ - `mp_parameters`:
387
+ - `auto_find_batch_size`: False
388
+ - `full_determinism`: False
389
+ - `torchdynamo`: None
390
+ - `ray_scope`: last
391
+ - `ddp_timeout`: 1800
392
+ - `torch_compile`: False
393
+ - `torch_compile_backend`: None
394
+ - `torch_compile_mode`: None
395
+ - `dispatch_batches`: None
396
+ - `split_batches`: None
397
+ - `include_tokens_per_second`: False
398
+ - `include_num_input_tokens_seen`: False
399
+ - `neftune_noise_alpha`: None
400
+ - `optim_target_modules`: None
401
+ - `batch_eval_metrics`: False
402
+ - `batch_sampler`: batch_sampler
403
+ - `multi_dataset_batch_sampler`: proportional
404
+
405
+ </details>
406
+
407
+ ### Training Logs
408
+ | Epoch | Step | Training Loss | loss | FT_label_spearman_cosine |
409
+ |:-----:|:----:|:-------------:|:-------:|:------------------------:|
410
+ | 1.0 | 265 | - | 6.9529 | 0.3450 |
411
+ | 2.0 | 530 | 7.5663 | 7.1002 | 0.4103 |
412
+ | 3.0 | 795 | - | 7.4786 | 0.4155 |
413
+ | 4.0 | 1060 | 5.5492 | 8.6710 | 0.4115 |
414
+ | 5.0 | 1325 | - | 10.3786 | 0.4056 |
415
+ | 6.0 | 1590 | 4.3991 | 10.4239 | 0.3987 |
416
+ | 7.0 | 1855 | - | 11.8681 | 0.4238 |
417
+ | 8.0 | 2120 | 3.5916 | 13.0752 | 0.4030 |
418
+ | 9.0 | 2385 | - | 12.8567 | 0.4240 |
419
+ | 10.0 | 2650 | 3.1139 | 12.4373 | 0.4270 |
420
+ | 11.0 | 2915 | - | 13.6725 | 0.4212 |
421
+ | 12.0 | 3180 | 2.6658 | 15.0521 | 0.4134 |
422
+ | 13.0 | 3445 | - | 15.4305 | 0.4114 |
423
+ | 14.0 | 3710 | 2.2024 | 15.5511 | 0.4060 |
424
+ | 15.0 | 3975 | - | 14.9427 | 0.4165 |
425
+ | 16.0 | 4240 | 1.8955 | 14.8399 | 0.4162 |
426
+ | 17.0 | 4505 | - | 15.0070 | 0.4170 |
427
+ | 18.0 | 4770 | 1.712 | 15.4417 | 0.4105 |
428
+ | 19.0 | 5035 | - | 15.6241 | 0.4086 |
429
+ | 20.0 | 5300 | 1.5088 | 15.6818 | 0.4076 |
430
+
431
+
432
+ ### Framework Versions
433
+ - Python: 3.10.12
434
+ - Sentence Transformers: 3.0.0
435
+ - Transformers: 4.41.1
436
+ - PyTorch: 2.3.0+cu121
437
+ - Accelerate: 0.30.1
438
+ - Datasets: 2.19.1
439
+ - Tokenizers: 0.19.1
440
+
441
+ ## Citation
442
+
443
+ ### BibTeX
444
+
445
+ #### Sentence Transformers
446
+ ```bibtex
447
+ @inproceedings{reimers-2019-sentence-bert,
448
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
449
+ author = "Reimers, Nils and Gurevych, Iryna",
450
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
451
+ month = "11",
452
+ year = "2019",
453
+ publisher = "Association for Computational Linguistics",
454
+ url = "https://arxiv.org/abs/1908.10084",
455
+ }
456
+ ```
457
+
458
+ #### CoSENTLoss
459
+ ```bibtex
460
+ @online{kexuefm-8847,
461
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
462
+ author={Su Jianlin},
463
+ year={2022},
464
+ month={Jan},
465
+ url={https://kexue.fm/archives/8847},
466
+ }
467
+ ```
468
+
469
+ <!--
470
+ ## Glossary
471
+
472
+ *Clearly define terms in order to be accessible across audiences.*
473
+ -->
474
+
475
+ <!--
476
+ ## Model Card Authors
477
+
478
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
479
+ -->
480
+
481
+ <!--
482
+ ## Model Card Contact
483
+
484
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
485
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f05dbe869bd21238d4546faf25610743f6c1bf4516fd5ef0e17f885072db4fc
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff