--- language: [] library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:10K - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Hgkang00/FT-label-consent-20") # Run inference sentences = [ 'I engage in risky behaviors like reckless driving or reckless sexual encounters.', 'Symptoms during a manic episode include inflated self-esteem or grandiosity,increased goal-directed activity, or excessive involvement in risky activities.', 'Marked decrease in functioning in areas like work, interpersonal relations, or self-care since the onset of the disturbance.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `FT_label` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.4628 | | **spearman_cosine** | **0.4076** | | pearson_manhattan | 0.4816 | | spearman_manhattan | 0.4067 | | pearson_euclidean | 0.4841 | | spearman_euclidean | 0.4076 | | pearson_dot | 0.4628 | | spearman_dot | 0.4076 | | pearson_max | 0.4841 | | spearman_max | 0.4076 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 33,800 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------| | Presence of one or more of the following intrusion symptoms associated with the traumatic event: recurrent distressing memories, dreams, flashbacks, psychological distress, or physiological reactions to cues of the traumatic event. | I avoid making phone calls, even to close friends or family, because I'm afraid of saying something wrong or sounding awkward. | 0.0 | | The phobic object or situation almost always provokes immediate fear or anxiety. | I find it hard to stick to a consistent eating schedule, sometimes going days without feeling the need to eat at all. | -1.0 | | The fear or anxiety is out of proportion to the actual danger posed by the specific object or situation and to the sociocultural context. | I have difficulty going to places where I feel there are no immediate exits, such as cinemas or auditoriums, as the fear of being stuck or unable to escape escalates my anxiety. | -1.0 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 4,225 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------|:------------------| | Excessive anxiety and worry occurring more days than not for at least 6 months, about a number of events or activities such as work or school performance. | Simple activities like going for a walk or doing household chores feel like daunting tasks due to my low energy levels. | -1.0 | | The individual fears acting in a way or showing anxiety symptoms that will be negatively evaluated, leading to humiliation, embarrassment, rejection, or offense to others. | I often find myself mindlessly snacking throughout the day due to changes in my appetite. | -1.0 | | Persistent avoidance of stimuli associated with the trauma, evidenced by avoiding distressing memories, thoughts, or feelings, or external reminders of the event. | Simple activities like going for a walk or doing household chores feel like daunting tasks due to my low energy levels. | -1.0 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `num_train_epochs`: 20 - `warmup_ratio`: 0.1 #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 20 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | FT_label_spearman_cosine | |:-----:|:----:|:-------------:|:-------:|:------------------------:| | 1.0 | 265 | - | 6.9529 | 0.3450 | | 2.0 | 530 | 7.5663 | 7.1002 | 0.4103 | | 3.0 | 795 | - | 7.4786 | 0.4155 | | 4.0 | 1060 | 5.5492 | 8.6710 | 0.4115 | | 5.0 | 1325 | - | 10.3786 | 0.4056 | | 6.0 | 1590 | 4.3991 | 10.4239 | 0.3987 | | 7.0 | 1855 | - | 11.8681 | 0.4238 | | 8.0 | 2120 | 3.5916 | 13.0752 | 0.4030 | | 9.0 | 2385 | - | 12.8567 | 0.4240 | | 10.0 | 2650 | 3.1139 | 12.4373 | 0.4270 | | 11.0 | 2915 | - | 13.6725 | 0.4212 | | 12.0 | 3180 | 2.6658 | 15.0521 | 0.4134 | | 13.0 | 3445 | - | 15.4305 | 0.4114 | | 14.0 | 3710 | 2.2024 | 15.5511 | 0.4060 | | 15.0 | 3975 | - | 14.9427 | 0.4165 | | 16.0 | 4240 | 1.8955 | 14.8399 | 0.4162 | | 17.0 | 4505 | - | 15.0070 | 0.4170 | | 18.0 | 4770 | 1.712 | 15.4417 | 0.4105 | | 19.0 | 5035 | - | 15.6241 | 0.4086 | | 20.0 | 5300 | 1.5088 | 15.6818 | 0.4076 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.0 - Transformers: 4.41.1 - PyTorch: 2.3.0+cu121 - Accelerate: 0.30.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CoSENTLoss ```bibtex @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } ```