--- library_name: peft license: apache-2.0 datasets: - HiTZ/MedExpQA language: - en - fr - it - es metrics: - accuracy pipeline_tag: text-generation ---
# Mistral 7B fine-tuned for Medical QA in MedExpQA benchmark
We provide a [Mistral7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) fine-tuned model on [MedExpQA, the first multilingual benchmark for Medical QA which includes
reference gold explanations](https://huggingface.co/datasets/HiTZ/MedExpQA).
The model has been fine-tuned using the Clinical Case and Question + automatically obtained RAG using [the MedCorp and MedRAG method](https://arxiv.org/pdf/2402.13178v1)
with 32 snippets. The model generates as output a prediction of the correct answer to the multiple choice exam and has been evaluated on 4 languages: English, French, Italian and Spanish.
- 📖 Paper: [MedExpQA: Multilingual Benchmarking of Large Language Models for Medical Question Answering](https://arxiv.org/abs/2404.05590v1)
- 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
- 💻 Code: [https://github.com/hitz-zentroa/MedExpQA/](https://github.com/hitz-zentroa/MedExpQA/)
For details about fine-tuning and evaluation please check the paper and the repository for usage.
# Model Description
- **Developed by**: Iñigo Alonso, Maite Oronoz, Rodrigo Agerri
- **Contact**: [Iñigo Alonso](https://hitz.ehu.eus/en/node/282) and [Rodrigo Agerri](https://ragerri.github.io/)
- **Website**: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
- **Funding**: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR
- **Model type**: text-generation
- **Language(s) (NLP)**: English, Spanish, French, Italian
- **License**: apache-2.0
- **Finetuned from model**: mistralai/Mistral-7B-v0.1
## Citation
If you use MedExpQA data then please **cite the following paper**:
```bibtex
@misc{alonso2024medexpqa,
title={MedExpQA: Multilingual Benchmarking of Large Language Models for Medical Question Answering},
author={Iñigo Alonso and Maite Oronoz and Rodrigo Agerri},
year={2024},
eprint={2404.05590},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
````