--- license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer datasets: - wcep-10 metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wcep-10 type: wcep-10 config: roberta split: validation args: roberta metrics: - name: Rouge1 type: rouge value: 22.6862 --- # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wcep-10 dataset. It achieves the following results on the evaluation set: - Loss: 3.1575 - Rouge1: 22.6862 - Rouge2: 7.7268 - Rougel: 19.1961 - Rougelsum: 19.3808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 6.5905 | 1.0 | 1020 | 3.4711 | 21.2268 | 7.4345 | 18.5023 | 18.6264 | | 4.1604 | 2.0 | 2040 | 3.3228 | 21.6354 | 7.3939 | 18.4926 | 18.6047 | | 3.914 | 3.0 | 3060 | 3.2606 | 21.9787 | 7.5818 | 18.6971 | 18.8603 | | 3.7698 | 4.0 | 4080 | 3.2058 | 21.8859 | 7.5625 | 18.6413 | 18.8169 | | 3.679 | 5.0 | 5100 | 3.1824 | 22.6515 | 7.7467 | 19.1196 | 19.3121 | | 3.6131 | 6.0 | 6120 | 3.1678 | 22.0223 | 7.6153 | 18.7956 | 18.9968 | | 3.5722 | 7.0 | 7140 | 3.1631 | 22.679 | 7.7952 | 19.1784 | 19.384 | | 3.5432 | 8.0 | 8160 | 3.1575 | 22.6862 | 7.7268 | 19.1961 | 19.3808 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1