File size: 2,715 Bytes
7022fe8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
base_model:
- lilmeaty/testing_semifinal
- huihui-ai/Llama-3.2-1B-Instruct-abliterated
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the passthrough merge method using [huihui-ai/Llama-3.2-1B-Instruct-abliterated](https://huggingface.co/huihui-ai/Llama-3.2-1B-Instruct-abliterated) as a base.
### Models Merged
The following models were included in the merge:
* [lilmeaty/testing_semifinal](https://huggingface.co/lilmeaty/testing_semifinal)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: lilmeaty/testing_semifinal
layer_range: [15, 16]
parameters:
weight: 0.3
density: 0.2
gamma: 0.005
normalize: true
int8_mask: true
random_seed: 42
temperature: 0.5
top_p: 0.65
inference: true
max_tokens: 300
stream: true
quantization:
- method: int8
value: 60
- method: int4
value: 40
merge_method: passthrough
base_model: huihui-ai/Llama-3.2-1B-Instruct-abliterated
dtype: float16
compression:
pruning:
enabled: true
sparsity: 0.95
distillation:
enabled: true
temperature: 0.7
model_type: "distilled"
quantization:
enabled: true
methods:
- int8
- int4
inference_optimizations:
caching:
enabled: true
cache_size: 1000
batching:
enabled: true
batch_size: 8
parallelism:
enabled: true
workers: 4
asynchronous:
enabled: true
max_concurrent_tasks: 5
tensor_cores:
enabled: true
gpu:
enabled: true
device: cuda
model_sharding:
enabled: true
shards: 2
memory_optimization:
enabled: true
strategy: "offload"
tensor_compression:
enabled: true
method: "tensor_factorization"
mixture_of_experts:
enabled: true
num_experts: 4
gating_strategy: top_k
top_k: 2
load_balancing:
enabled: true
balance_factor: 0.5
expert_capacity:
max_tokens_per_expert: 512
dynamic_routing:
enabled: true
routing_threshold: 0.1
routing_optimizations:
enabled: true
cache_routing: true
model_sparsity:
enabled: true
sparsity_pattern: "block"
mask_method: "random"
pruning_factor: 0.98
auto_tuning:
enabled: true
batch_size_adaptation:
enabled: true
factor: 0.8
max_batch_size: 32
temperature_scheduling:
enabled: true
start_temp: 1.0
end_temp: 0.5
schedule: "linear"
```
|