File size: 2,399 Bytes
f4c234c
 
 
 
 
c6a5959
f4c234c
 
 
 
 
 
 
 
 
 
 
 
c6a5959
f4c234c
c6a5959
f4c234c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: bigscience-bloom-rail-1.0
library_name: peft
tags:
- llama-factory
- lora
- generated_from_trainer
base_model: bigscience/bloom-7b1
model-index:
- name: BLOOM_AAID_structured_train
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BLOOM_AAID_structured_train

This model is a fine-tuned version of [bigscience/bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) on the AAID_structured dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8177

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.7338        | 0.0109 | 10   | 0.9125          |
| 0.6341        | 0.0219 | 20   | 0.8568          |
| 0.5526        | 0.0328 | 30   | 0.8991          |
| 0.5651        | 0.0438 | 40   | 0.8944          |
| 0.5392        | 0.0547 | 50   | 0.8796          |
| 0.5038        | 0.0656 | 60   | 0.8612          |
| 0.4904        | 0.0766 | 70   | 0.8335          |
| 0.476         | 0.0875 | 80   | 0.8787          |
| 0.4819        | 0.0984 | 90   | 0.8442          |
| 0.4376        | 0.1094 | 100  | 0.8534          |
| 0.4443        | 0.1203 | 110  | 0.8331          |
| 0.44          | 0.1313 | 120  | 0.8530          |
| 0.4362        | 0.1422 | 130  | 0.8594          |
| 0.4273        | 0.1531 | 140  | 0.8177          |
| 0.438         | 0.1641 | 150  | 0.8450          |
| 0.4234        | 0.1750 | 160  | 0.8484          |
| 0.4254        | 0.1859 | 170  | 0.8263          |
| 0.4074        | 0.1969 | 180  | 0.8609          |
| 0.4209        | 0.2078 | 190  | 0.8371          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1