HongxuanLi
commited on
Commit
•
5edb1c2
1
Parent(s):
0bb9310
Upload 8 files
Browse files- README.md +200 -1
- adapter_config.json +35 -0
- adapter_model.safetensors +3 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- trainer_state.json +471 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,202 @@
|
|
1 |
---
|
2 |
-
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
4 |
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.1.dev0
|
adapter_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"v_proj",
|
24 |
+
"q_proj",
|
25 |
+
"down_proj",
|
26 |
+
"up_proj",
|
27 |
+
"o_proj",
|
28 |
+
"lm_head",
|
29 |
+
"gate_proj",
|
30 |
+
"k_proj"
|
31 |
+
],
|
32 |
+
"task_type": "CAUSAL_LM",
|
33 |
+
"use_dora": false,
|
34 |
+
"use_rslora": false
|
35 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bea70c23840fe6501cad72a02b862cf2e250731f702847898b818f1c1a3b203
|
3 |
+
size 288506496
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5080dca898ff34d23bf644b3b88424f4a4bc1b7fc2eab083cbb0dd6a05aa53fa
|
3 |
+
size 14048020
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99eb85eda4049dc5426c772f8211476f668829df504297a3974de81043a518fb
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb7abe03cc0693b70973abe46c8e4fdcf77aa4dfb9543ba6f6e0984b3856055b
|
3 |
+
size 1064
|
trainer_state.json
ADDED
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 33.333333333333336,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 1500,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.1111111111111112,
|
13 |
+
"grad_norm": 2.6699063777923584,
|
14 |
+
"learning_rate": 2.443609022556391e-05,
|
15 |
+
"loss": 1.8217,
|
16 |
+
"step": 50
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 1.1111111111111112,
|
20 |
+
"eval_loss": 1.0424705743789673,
|
21 |
+
"eval_runtime": 4.0916,
|
22 |
+
"eval_samples_per_second": 43.993,
|
23 |
+
"eval_steps_per_second": 5.621,
|
24 |
+
"step": 50
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 2.2222222222222223,
|
28 |
+
"grad_norm": 0.44133517146110535,
|
29 |
+
"learning_rate": 2.380952380952381e-05,
|
30 |
+
"loss": 0.5439,
|
31 |
+
"step": 100
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 2.2222222222222223,
|
35 |
+
"eval_loss": 0.3811015784740448,
|
36 |
+
"eval_runtime": 4.0749,
|
37 |
+
"eval_samples_per_second": 44.173,
|
38 |
+
"eval_steps_per_second": 5.644,
|
39 |
+
"step": 100
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 3.3333333333333335,
|
43 |
+
"grad_norm": 0.540984034538269,
|
44 |
+
"learning_rate": 2.3182957393483708e-05,
|
45 |
+
"loss": 0.3496,
|
46 |
+
"step": 150
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 3.3333333333333335,
|
50 |
+
"eval_loss": 0.3363141715526581,
|
51 |
+
"eval_runtime": 4.089,
|
52 |
+
"eval_samples_per_second": 44.02,
|
53 |
+
"eval_steps_per_second": 5.625,
|
54 |
+
"step": 150
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 4.444444444444445,
|
58 |
+
"grad_norm": 0.4714152216911316,
|
59 |
+
"learning_rate": 2.255639097744361e-05,
|
60 |
+
"loss": 0.3178,
|
61 |
+
"step": 200
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 4.444444444444445,
|
65 |
+
"eval_loss": 0.3166368007659912,
|
66 |
+
"eval_runtime": 4.0511,
|
67 |
+
"eval_samples_per_second": 44.432,
|
68 |
+
"eval_steps_per_second": 5.677,
|
69 |
+
"step": 200
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 5.555555555555555,
|
73 |
+
"grad_norm": 0.5102563500404358,
|
74 |
+
"learning_rate": 2.1929824561403507e-05,
|
75 |
+
"loss": 0.2971,
|
76 |
+
"step": 250
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 5.555555555555555,
|
80 |
+
"eval_loss": 0.304388165473938,
|
81 |
+
"eval_runtime": 4.0541,
|
82 |
+
"eval_samples_per_second": 44.399,
|
83 |
+
"eval_steps_per_second": 5.673,
|
84 |
+
"step": 250
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 6.666666666666667,
|
88 |
+
"grad_norm": 0.8356263041496277,
|
89 |
+
"learning_rate": 2.130325814536341e-05,
|
90 |
+
"loss": 0.2825,
|
91 |
+
"step": 300
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 6.666666666666667,
|
95 |
+
"eval_loss": 0.29874512553215027,
|
96 |
+
"eval_runtime": 4.0506,
|
97 |
+
"eval_samples_per_second": 44.438,
|
98 |
+
"eval_steps_per_second": 5.678,
|
99 |
+
"step": 300
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 7.777777777777778,
|
103 |
+
"grad_norm": 0.694858968257904,
|
104 |
+
"learning_rate": 2.067669172932331e-05,
|
105 |
+
"loss": 0.2714,
|
106 |
+
"step": 350
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 7.777777777777778,
|
110 |
+
"eval_loss": 0.2942558825016022,
|
111 |
+
"eval_runtime": 4.074,
|
112 |
+
"eval_samples_per_second": 44.182,
|
113 |
+
"eval_steps_per_second": 5.646,
|
114 |
+
"step": 350
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 8.88888888888889,
|
118 |
+
"grad_norm": 0.7505309581756592,
|
119 |
+
"learning_rate": 2.0050125313283208e-05,
|
120 |
+
"loss": 0.2616,
|
121 |
+
"step": 400
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 8.88888888888889,
|
125 |
+
"eval_loss": 0.29128891229629517,
|
126 |
+
"eval_runtime": 4.0871,
|
127 |
+
"eval_samples_per_second": 44.041,
|
128 |
+
"eval_steps_per_second": 5.627,
|
129 |
+
"step": 400
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 10.0,
|
133 |
+
"grad_norm": 0.7603775858879089,
|
134 |
+
"learning_rate": 1.942355889724311e-05,
|
135 |
+
"loss": 0.2552,
|
136 |
+
"step": 450
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 10.0,
|
140 |
+
"eval_loss": 0.28786608576774597,
|
141 |
+
"eval_runtime": 4.052,
|
142 |
+
"eval_samples_per_second": 44.422,
|
143 |
+
"eval_steps_per_second": 5.676,
|
144 |
+
"step": 450
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 11.11111111111111,
|
148 |
+
"grad_norm": 0.831240177154541,
|
149 |
+
"learning_rate": 1.8796992481203007e-05,
|
150 |
+
"loss": 0.2472,
|
151 |
+
"step": 500
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 11.11111111111111,
|
155 |
+
"eval_loss": 0.28864821791648865,
|
156 |
+
"eval_runtime": 4.0371,
|
157 |
+
"eval_samples_per_second": 44.586,
|
158 |
+
"eval_steps_per_second": 5.697,
|
159 |
+
"step": 500
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 12.222222222222221,
|
163 |
+
"grad_norm": 0.7524340152740479,
|
164 |
+
"learning_rate": 1.8170426065162908e-05,
|
165 |
+
"loss": 0.2388,
|
166 |
+
"step": 550
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 12.222222222222221,
|
170 |
+
"eval_loss": 0.28881773352622986,
|
171 |
+
"eval_runtime": 4.0933,
|
172 |
+
"eval_samples_per_second": 43.974,
|
173 |
+
"eval_steps_per_second": 5.619,
|
174 |
+
"step": 550
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 13.333333333333334,
|
178 |
+
"grad_norm": 0.8262473940849304,
|
179 |
+
"learning_rate": 1.7543859649122806e-05,
|
180 |
+
"loss": 0.2309,
|
181 |
+
"step": 600
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 13.333333333333334,
|
185 |
+
"eval_loss": 0.2914719581604004,
|
186 |
+
"eval_runtime": 4.0773,
|
187 |
+
"eval_samples_per_second": 44.147,
|
188 |
+
"eval_steps_per_second": 5.641,
|
189 |
+
"step": 600
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 14.444444444444445,
|
193 |
+
"grad_norm": 0.8302382826805115,
|
194 |
+
"learning_rate": 1.6917293233082707e-05,
|
195 |
+
"loss": 0.2263,
|
196 |
+
"step": 650
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 14.444444444444445,
|
200 |
+
"eval_loss": 0.2899852395057678,
|
201 |
+
"eval_runtime": 4.0443,
|
202 |
+
"eval_samples_per_second": 44.507,
|
203 |
+
"eval_steps_per_second": 5.687,
|
204 |
+
"step": 650
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 15.555555555555555,
|
208 |
+
"grad_norm": 0.957399845123291,
|
209 |
+
"learning_rate": 1.6290726817042605e-05,
|
210 |
+
"loss": 0.2181,
|
211 |
+
"step": 700
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 15.555555555555555,
|
215 |
+
"eval_loss": 0.29406097531318665,
|
216 |
+
"eval_runtime": 4.0913,
|
217 |
+
"eval_samples_per_second": 43.996,
|
218 |
+
"eval_steps_per_second": 5.622,
|
219 |
+
"step": 700
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 16.666666666666668,
|
223 |
+
"grad_norm": 1.0171995162963867,
|
224 |
+
"learning_rate": 1.5664160401002506e-05,
|
225 |
+
"loss": 0.2115,
|
226 |
+
"step": 750
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 16.666666666666668,
|
230 |
+
"eval_loss": 0.2935585081577301,
|
231 |
+
"eval_runtime": 4.0514,
|
232 |
+
"eval_samples_per_second": 44.429,
|
233 |
+
"eval_steps_per_second": 5.677,
|
234 |
+
"step": 750
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 17.77777777777778,
|
238 |
+
"grad_norm": 0.9579535722732544,
|
239 |
+
"learning_rate": 1.5037593984962406e-05,
|
240 |
+
"loss": 0.2056,
|
241 |
+
"step": 800
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 17.77777777777778,
|
245 |
+
"eval_loss": 0.2986494302749634,
|
246 |
+
"eval_runtime": 4.0426,
|
247 |
+
"eval_samples_per_second": 44.526,
|
248 |
+
"eval_steps_per_second": 5.689,
|
249 |
+
"step": 800
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 18.88888888888889,
|
253 |
+
"grad_norm": 1.0283973217010498,
|
254 |
+
"learning_rate": 1.4411027568922305e-05,
|
255 |
+
"loss": 0.1983,
|
256 |
+
"step": 850
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 18.88888888888889,
|
260 |
+
"eval_loss": 0.30257824063301086,
|
261 |
+
"eval_runtime": 4.0596,
|
262 |
+
"eval_samples_per_second": 44.339,
|
263 |
+
"eval_steps_per_second": 5.666,
|
264 |
+
"step": 850
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 20.0,
|
268 |
+
"grad_norm": 1.068368673324585,
|
269 |
+
"learning_rate": 1.3784461152882205e-05,
|
270 |
+
"loss": 0.1915,
|
271 |
+
"step": 900
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 20.0,
|
275 |
+
"eval_loss": 0.30601659417152405,
|
276 |
+
"eval_runtime": 4.0465,
|
277 |
+
"eval_samples_per_second": 44.483,
|
278 |
+
"eval_steps_per_second": 5.684,
|
279 |
+
"step": 900
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 21.11111111111111,
|
283 |
+
"grad_norm": 0.987966001033783,
|
284 |
+
"learning_rate": 1.3157894736842106e-05,
|
285 |
+
"loss": 0.1834,
|
286 |
+
"step": 950
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 21.11111111111111,
|
290 |
+
"eval_loss": 0.3163508176803589,
|
291 |
+
"eval_runtime": 4.0462,
|
292 |
+
"eval_samples_per_second": 44.486,
|
293 |
+
"eval_steps_per_second": 5.684,
|
294 |
+
"step": 950
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 22.22222222222222,
|
298 |
+
"grad_norm": 1.046950101852417,
|
299 |
+
"learning_rate": 1.2531328320802006e-05,
|
300 |
+
"loss": 0.1773,
|
301 |
+
"step": 1000
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 22.22222222222222,
|
305 |
+
"eval_loss": 0.32225680351257324,
|
306 |
+
"eval_runtime": 4.0814,
|
307 |
+
"eval_samples_per_second": 44.102,
|
308 |
+
"eval_steps_per_second": 5.635,
|
309 |
+
"step": 1000
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 23.333333333333332,
|
313 |
+
"grad_norm": 1.2292746305465698,
|
314 |
+
"learning_rate": 1.1904761904761905e-05,
|
315 |
+
"loss": 0.1707,
|
316 |
+
"step": 1050
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 23.333333333333332,
|
320 |
+
"eval_loss": 0.3270200490951538,
|
321 |
+
"eval_runtime": 4.0696,
|
322 |
+
"eval_samples_per_second": 44.23,
|
323 |
+
"eval_steps_per_second": 5.652,
|
324 |
+
"step": 1050
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 24.444444444444443,
|
328 |
+
"grad_norm": 1.107651948928833,
|
329 |
+
"learning_rate": 1.1278195488721805e-05,
|
330 |
+
"loss": 0.1641,
|
331 |
+
"step": 1100
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 24.444444444444443,
|
335 |
+
"eval_loss": 0.3326013684272766,
|
336 |
+
"eval_runtime": 4.0592,
|
337 |
+
"eval_samples_per_second": 44.343,
|
338 |
+
"eval_steps_per_second": 5.666,
|
339 |
+
"step": 1100
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 25.555555555555557,
|
343 |
+
"grad_norm": 1.3203223943710327,
|
344 |
+
"learning_rate": 1.0651629072681704e-05,
|
345 |
+
"loss": 0.1575,
|
346 |
+
"step": 1150
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 25.555555555555557,
|
350 |
+
"eval_loss": 0.33997443318367004,
|
351 |
+
"eval_runtime": 4.0804,
|
352 |
+
"eval_samples_per_second": 44.113,
|
353 |
+
"eval_steps_per_second": 5.637,
|
354 |
+
"step": 1150
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 26.666666666666668,
|
358 |
+
"grad_norm": 1.2884823083877563,
|
359 |
+
"learning_rate": 1.0025062656641604e-05,
|
360 |
+
"loss": 0.1517,
|
361 |
+
"step": 1200
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 26.666666666666668,
|
365 |
+
"eval_loss": 0.3428906202316284,
|
366 |
+
"eval_runtime": 4.0803,
|
367 |
+
"eval_samples_per_second": 44.114,
|
368 |
+
"eval_steps_per_second": 5.637,
|
369 |
+
"step": 1200
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 27.77777777777778,
|
373 |
+
"grad_norm": 1.4833685159683228,
|
374 |
+
"learning_rate": 9.398496240601503e-06,
|
375 |
+
"loss": 0.1442,
|
376 |
+
"step": 1250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 27.77777777777778,
|
380 |
+
"eval_loss": 0.35523876547813416,
|
381 |
+
"eval_runtime": 4.0449,
|
382 |
+
"eval_samples_per_second": 44.5,
|
383 |
+
"eval_steps_per_second": 5.686,
|
384 |
+
"step": 1250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 28.88888888888889,
|
388 |
+
"grad_norm": 1.4259836673736572,
|
389 |
+
"learning_rate": 8.771929824561403e-06,
|
390 |
+
"loss": 0.1397,
|
391 |
+
"step": 1300
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 28.88888888888889,
|
395 |
+
"eval_loss": 0.36296555399894714,
|
396 |
+
"eval_runtime": 4.0386,
|
397 |
+
"eval_samples_per_second": 44.57,
|
398 |
+
"eval_steps_per_second": 5.695,
|
399 |
+
"step": 1300
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 30.0,
|
403 |
+
"grad_norm": 1.5832905769348145,
|
404 |
+
"learning_rate": 8.145363408521302e-06,
|
405 |
+
"loss": 0.1345,
|
406 |
+
"step": 1350
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 30.0,
|
410 |
+
"eval_loss": 0.3718196153640747,
|
411 |
+
"eval_runtime": 4.0526,
|
412 |
+
"eval_samples_per_second": 44.416,
|
413 |
+
"eval_steps_per_second": 5.675,
|
414 |
+
"step": 1350
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 31.11111111111111,
|
418 |
+
"grad_norm": 1.5873230695724487,
|
419 |
+
"learning_rate": 7.518796992481203e-06,
|
420 |
+
"loss": 0.1289,
|
421 |
+
"step": 1400
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 31.11111111111111,
|
425 |
+
"eval_loss": 0.38369277119636536,
|
426 |
+
"eval_runtime": 4.0471,
|
427 |
+
"eval_samples_per_second": 44.476,
|
428 |
+
"eval_steps_per_second": 5.683,
|
429 |
+
"step": 1400
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 32.22222222222222,
|
433 |
+
"grad_norm": 1.3492352962493896,
|
434 |
+
"learning_rate": 6.892230576441102e-06,
|
435 |
+
"loss": 0.1234,
|
436 |
+
"step": 1450
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 32.22222222222222,
|
440 |
+
"eval_loss": 0.39153799414634705,
|
441 |
+
"eval_runtime": 4.0507,
|
442 |
+
"eval_samples_per_second": 44.436,
|
443 |
+
"eval_steps_per_second": 5.678,
|
444 |
+
"step": 1450
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 33.333333333333336,
|
448 |
+
"grad_norm": 1.5531470775604248,
|
449 |
+
"learning_rate": 6.265664160401003e-06,
|
450 |
+
"loss": 0.1194,
|
451 |
+
"step": 1500
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 33.333333333333336,
|
455 |
+
"eval_loss": 0.3885114789009094,
|
456 |
+
"eval_runtime": 4.0759,
|
457 |
+
"eval_samples_per_second": 44.162,
|
458 |
+
"eval_steps_per_second": 5.643,
|
459 |
+
"step": 1500
|
460 |
+
}
|
461 |
+
],
|
462 |
+
"logging_steps": 50,
|
463 |
+
"max_steps": 2000,
|
464 |
+
"num_input_tokens_seen": 0,
|
465 |
+
"num_train_epochs": 45,
|
466 |
+
"save_steps": 25,
|
467 |
+
"total_flos": 3.996628758124954e+16,
|
468 |
+
"train_batch_size": 4,
|
469 |
+
"trial_name": null,
|
470 |
+
"trial_params": null
|
471 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31fb09a8ca46eab683c0c509a96068143a53814b2d3e954b809726f49a16ece0
|
3 |
+
size 4984
|