--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: intent-finetuned-intent-detection results: [] --- # intent-finetuned-intent-detection This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6938 - Accuracy: 0.8638 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 3.0316 | 1.0 | 180 | 1.7788 | 0.6819 | 0.6352 | | 1.4515 | 2.0 | 360 | 1.0539 | 0.7956 | 0.7735 | | 0.9212 | 3.0 | 540 | 0.8143 | 0.8457 | 0.8382 | | 0.6883 | 4.0 | 720 | 0.7246 | 0.8601 | 0.8544 | | 0.583 | 5.0 | 900 | 0.6938 | 0.8638 | 0.8593 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2