File size: 1,886 Bytes
e9dbdb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
base_model: cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: xlm-roberta-base-finetuned-language-detection
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-base-finetuned-language-detection

This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5624
- Accuracy: 0.8195
- F1: 0.8195

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5881        | 1.0   | 941  | 0.5179          | 0.7917   | 0.7915 |
| 0.4524        | 2.0   | 1882 | 0.5121          | 0.8097   | 0.8103 |
| 0.3749        | 3.0   | 2823 | 0.5268          | 0.8142   | 0.8142 |
| 0.3159        | 4.0   | 3764 | 0.5388          | 0.8176   | 0.8176 |
| 0.2721        | 5.0   | 4705 | 0.5624          | 0.8195   | 0.8195 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0