--- base_model: unsloth/Meta-Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - generated_from_trainer model-index: - name: finetune/output/medical-5day results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: unsloth/Meta-Llama-3.1-8B-Instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false chat_template: chatml datasets: - path: Howard881010/medical-5day type: alpaca train_on_split: train dataset_prepared_path: output_dir: ./finetune/output/medical-5day test_datasets: - path: Howard881010/medical-5day split: valid type: alpaca adapter: lora lora_model_dir: sequence_len: 4600 sample_packing: false pad_to_sequence_len: true lora_r: 8 lora_alpha: 32 lora_dropout: 0.1 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: finetune wandb_entity: wandb_watch: wandb_name: medical-5day wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 1 optimizer: adamw_hf learning_rate: 0.00002 max_grad_norm: 1.0 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true logging_steps: 1 xformers_attention: flash_attention: true eval_sample_packing: False warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 weight_decay: 0.0 seed: 0 special_tokens: pad_token: "<|end_of_text|>" ```

# finetune/output/medical-5day This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8028 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 6 - total_train_batch_size: 24 - total_eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2903 | 0.0011 | 1 | 1.1098 | | 0.9259 | 0.2505 | 233 | 0.8279 | | 0.8773 | 0.5011 | 466 | 0.8081 | | 0.8962 | 0.7516 | 699 | 0.8028 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1