|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Tokenization class for SigLIP model.""" |
|
|
|
import os |
|
import re |
|
import string |
|
import warnings |
|
from shutil import copyfile |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple |
|
|
|
import sentencepiece as spm |
|
|
|
from transformers.convert_slow_tokenizer import import_protobuf |
|
from transformers.tokenization_utils import PreTrainedTokenizer |
|
from transformers.tokenization_utils_base import AddedToken |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers.tokenization_utils_base import TextInput |
|
from transformers.utils import logging, requires_backends |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/spiece.model", |
|
} |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"google/siglip-base-patch16-224": 256, |
|
} |
|
|
|
SPIECE_UNDERLINE = "▁" |
|
|
|
|
|
class SiglipTokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct a Siglip tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). |
|
|
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to |
|
this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that |
|
contains the vocabulary necessary to instantiate a tokenizer. |
|
eos_token (`str`, *optional*, defaults to `"</s>"`): |
|
The end of sequence token. |
|
unk_token (`str`, *optional*, defaults to `"<unk>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
pad_token (`str`, *optional*, defaults to `"</s>"`): |
|
The token used for padding, for example when batching sequences of different lengths. |
|
additional_special_tokens (`List[str]`, *optional*): |
|
Additional special tokens used by the tokenizer. |
|
sp_model_kwargs (`dict`, *optional*): |
|
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for |
|
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, |
|
to set: |
|
|
|
- `enable_sampling`: Enable subword regularization. |
|
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. |
|
|
|
- `nbest_size = {0,1}`: No sampling is performed. |
|
- `nbest_size > 1`: samples from the nbest_size results. |
|
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) |
|
using forward-filtering-and-backward-sampling algorithm. |
|
|
|
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for |
|
BPE-dropout. |
|
model_max_length (`int`, *optional*, defaults to 64): |
|
The maximum length (in number of tokens) for model inputs. |
|
do_lower_case (`bool`, *optional*, defaults to `True`): |
|
Whether or not to lowercase the input when tokenizing. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
eos_token="</s>", |
|
unk_token="<unk>", |
|
pad_token="</s>", |
|
additional_special_tokens=None, |
|
sp_model_kwargs: Optional[Dict[str, Any]] = None, |
|
model_max_length=64, |
|
do_lower_case=True, |
|
**kwargs, |
|
) -> None: |
|
requires_backends(self, "protobuf") |
|
|
|
pad_token = ( |
|
AddedToken(pad_token, rstrip=True, lstrip=True, normalized=False, special=True) |
|
if isinstance(pad_token, str) |
|
else pad_token |
|
) |
|
unk_token = ( |
|
AddedToken(unk_token, rstrip=True, lstrip=True, normalized=False, special=True) |
|
if isinstance(unk_token, str) |
|
else unk_token |
|
) |
|
eos_token = ( |
|
AddedToken(eos_token, rstrip=True, lstrip=True, normalized=False, special=True) |
|
if isinstance(eos_token, str) |
|
else eos_token |
|
) |
|
|
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs |
|
|
|
self.do_lower_case = do_lower_case |
|
self.vocab_file = vocab_file |
|
|
|
self.sp_model = self.get_spm_processor() |
|
self.vocab_file = vocab_file |
|
|
|
super().__init__( |
|
eos_token=eos_token, |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
additional_special_tokens=additional_special_tokens, |
|
sp_model_kwargs=self.sp_model_kwargs, |
|
model_max_length=model_max_length, |
|
do_lower_case=do_lower_case, |
|
**kwargs, |
|
) |
|
|
|
def get_spm_processor(self): |
|
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
with open(self.vocab_file, "rb") as f: |
|
sp_model = f.read() |
|
model_pb2 = import_protobuf() |
|
model = model_pb2.ModelProto.FromString(sp_model) |
|
normalizer_spec = model_pb2.NormalizerSpec() |
|
normalizer_spec.add_dummy_prefix = False |
|
model.normalizer_spec.MergeFrom(normalizer_spec) |
|
sp_model = model.SerializeToString() |
|
tokenizer.LoadFromSerializedProto(sp_model) |
|
return tokenizer |
|
|
|
@property |
|
|
|
def vocab_size(self): |
|
return self.sp_model.get_piece_size() |
|
|
|
|
|
def get_vocab(self): |
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` method. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
|
|
if token_ids_1 is None: |
|
return ([0] * len(token_ids_0)) + [1] |
|
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] |
|
|
|
|
|
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]: |
|
"""Do not add eos again if user already added it.""" |
|
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id: |
|
warnings.warn( |
|
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" |
|
" eos tokens being added." |
|
) |
|
return token_ids |
|
else: |
|
return token_ids + [self.eos_token_id] |
|
|
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make |
|
use of token type ids, therefore a list of zeros is returned. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of zeros. |
|
""" |
|
eos = [self.eos_token_id] |
|
|
|
if token_ids_1 is None: |
|
return len(token_ids_0 + eos) * [0] |
|
return len(token_ids_0 + eos + token_ids_1 + eos) * [0] |
|
|
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A sequence has the following format: |
|
|
|
- single sequence: `X </s>` |
|
- pair of sequences: `A </s> B </s>` |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. |
|
""" |
|
token_ids_0 = self._add_eos_if_not_present(token_ids_0) |
|
if token_ids_1 is None: |
|
return token_ids_0 |
|
else: |
|
token_ids_1 = self._add_eos_if_not_present(token_ids_1) |
|
return token_ids_0 + token_ids_1 |
|
|
|
|
|
def __getstate__(self): |
|
state = self.__dict__.copy() |
|
state["sp_model"] = None |
|
return state |
|
|
|
|
|
def __setstate__(self, d): |
|
self.__dict__ = d |
|
|
|
|
|
if not hasattr(self, "sp_model_kwargs"): |
|
self.sp_model_kwargs = {} |
|
|
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
self.sp_model.Load(self.vocab_file) |
|
|
|
def remove_punctuation(self, text: str) -> str: |
|
return text.translate(str.maketrans("", "", string.punctuation)) |
|
|
|
|
|
def canonicalize_text(self, text, *, keep_punctuation_exact_string=None): |
|
"""Returns canonicalized `text` (puncuation removed). |
|
|
|
Args: |
|
text (`str`): |
|
String to be canonicalized. |
|
keep_punctuation_exact_string (`str`, *optional*): |
|
If provided, then this exact string is kept. For example providing '{}' will keep any occurrences of '{}' |
|
(but will still remove '{' and '}' that appear separately). |
|
""" |
|
if keep_punctuation_exact_string: |
|
text = keep_punctuation_exact_string.join( |
|
self.remove_punctuation(part) for part in text.split(keep_punctuation_exact_string) |
|
) |
|
else: |
|
text = self.remove_punctuation(text) |
|
text = re.sub(r"\s+", " ", text) |
|
text = text.strip() |
|
|
|
return text |
|
|
|
def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]: |
|
""" |
|
Converts a string to a list of tokens. |
|
""" |
|
tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs) |
|
|
|
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: |
|
tokens = tokens[1:] |
|
return tokens |
|
|
|
@property |
|
|
|
def unk_token_length(self): |
|
return len(self.sp_model.encode(str(self.unk_token))) |
|
|
|
def _tokenize(self, text, **kwargs): |
|
""" |
|
Returns a tokenized string. |
|
|
|
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any |
|
SPIECE_UNDERLINE. |
|
|
|
For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`. |
|
|
|
Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`. |
|
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`. |
|
""" |
|
text = self.canonicalize_text(text, keep_punctuation_exact_string=None) |
|
tokens = self.sp_model.encode(text, out_type=str) |
|
|
|
|
|
tokens = self.sp_model.encode(self.unk_token + text, out_type=str) |
|
|
|
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens |
|
|
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.sp_model.piece_to_id(token) |
|
|
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
token = self.sp_model.IdToPiece(index) |
|
return token |
|
|
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
current_sub_tokens = [] |
|
|
|
tokens[0] = tokens[0].lstrip(SPIECE_UNDERLINE) |
|
out_string = "" |
|
prev_is_special = False |
|
for token in tokens: |
|
|
|
if token in self.all_special_tokens: |
|
if not prev_is_special: |
|
out_string += " " |
|
out_string += self.sp_model.decode(current_sub_tokens) + token |
|
prev_is_special = True |
|
current_sub_tokens = [] |
|
else: |
|
current_sub_tokens.append(token) |
|
prev_is_special = False |
|
out_string += self.sp_model.decode(current_sub_tokens) |
|
return out_string.strip() |
|
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
out_vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): |
|
copyfile(self.vocab_file, out_vocab_file) |
|
elif not os.path.isfile(self.vocab_file): |
|
with open(out_vocab_file, "wb") as fi: |
|
content_spiece_model = self.sp_model.serialized_model_proto() |
|
fi.write(content_spiece_model) |
|
|
|
return (out_vocab_file,) |
|
|