add processing/tokenization siglip
Browse files- processing_siglip.py +143 -0
- tokenization_siglip.py +389 -0
processing_siglip.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Image/Text processor class for SigLIP.
|
17 |
+
"""
|
18 |
+
|
19 |
+
from typing import List, Optional, Union
|
20 |
+
|
21 |
+
from transformers.feature_extraction_utils import BatchFeature
|
22 |
+
from transformers.image_utils import ImageInput
|
23 |
+
from transformers.processing_utils import ProcessorMixin
|
24 |
+
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
25 |
+
from transformers.utils import TensorType
|
26 |
+
|
27 |
+
|
28 |
+
class SiglipProcessor(ProcessorMixin):
|
29 |
+
r"""
|
30 |
+
Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor.
|
31 |
+
|
32 |
+
[`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the
|
33 |
+
[`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
image_processor ([`SiglipImageProcessor`]):
|
37 |
+
The image processor is a required input.
|
38 |
+
tokenizer ([`SiglipTokenizer`]):
|
39 |
+
The tokenizer is a required input.
|
40 |
+
"""
|
41 |
+
|
42 |
+
attributes = ["image_processor", "tokenizer"]
|
43 |
+
image_processor_class = "SiglipImageProcessor"
|
44 |
+
tokenizer_class = "SiglipTokenizer"
|
45 |
+
|
46 |
+
def __init__(self, image_processor, tokenizer):
|
47 |
+
super().__init__(image_processor, tokenizer)
|
48 |
+
|
49 |
+
def __call__(
|
50 |
+
self,
|
51 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
52 |
+
images: ImageInput = None,
|
53 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
54 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
55 |
+
max_length: int = None,
|
56 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
57 |
+
) -> BatchFeature:
|
58 |
+
"""
|
59 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
60 |
+
and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode
|
61 |
+
the text. To prepare the image(s), this method forwards the `images` argument to
|
62 |
+
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
63 |
+
of the above two methods for more information.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
67 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
68 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
69 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
70 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
71 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
72 |
+
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
|
73 |
+
number of channels, H and W are image height and width.
|
74 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
75 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
76 |
+
index) among:
|
77 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
78 |
+
sequence if provided).
|
79 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
80 |
+
acceptable input length for the model if that argument is not provided.
|
81 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
82 |
+
lengths).
|
83 |
+
max_length (`int`, *optional*):
|
84 |
+
Maximum length of the returned list and optionally padding length (see above).
|
85 |
+
truncation (`bool`, *optional*):
|
86 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
87 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
88 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
89 |
+
|
90 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
91 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
92 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
93 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
97 |
+
|
98 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
99 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
100 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
101 |
+
`None`).
|
102 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
103 |
+
"""
|
104 |
+
|
105 |
+
if text is None and images is None:
|
106 |
+
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
107 |
+
|
108 |
+
if text is not None:
|
109 |
+
encoding = self.tokenizer(
|
110 |
+
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
|
111 |
+
)
|
112 |
+
|
113 |
+
if images is not None:
|
114 |
+
image_features = self.image_processor(images, return_tensors=return_tensors)
|
115 |
+
|
116 |
+
if text is not None and images is not None:
|
117 |
+
encoding["pixel_values"] = image_features.pixel_values
|
118 |
+
return encoding
|
119 |
+
elif text is not None:
|
120 |
+
return encoding
|
121 |
+
else:
|
122 |
+
return BatchFeature(data=dict(**image_features), tensor_type=return_tensors)
|
123 |
+
|
124 |
+
def decode(self, *args, **kwargs):
|
125 |
+
"""
|
126 |
+
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
|
127 |
+
the docstring of this method for more information.
|
128 |
+
"""
|
129 |
+
return self.tokenizer.decode(*args, **kwargs)
|
130 |
+
|
131 |
+
def batch_decode(self, *args, **kwargs):
|
132 |
+
"""
|
133 |
+
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
134 |
+
refer to the docstring of this method for more information.
|
135 |
+
"""
|
136 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
137 |
+
|
138 |
+
@property
|
139 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Siglip, T5->Siglip
|
140 |
+
def model_input_names(self):
|
141 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
142 |
+
image_processor_input_names = self.image_processor.model_input_names
|
143 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
tokenization_siglip.py
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization class for SigLIP model."""
|
16 |
+
|
17 |
+
import os
|
18 |
+
import re
|
19 |
+
import string
|
20 |
+
import warnings
|
21 |
+
from shutil import copyfile
|
22 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
23 |
+
|
24 |
+
import sentencepiece as spm
|
25 |
+
|
26 |
+
from transformers.convert_slow_tokenizer import import_protobuf
|
27 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
28 |
+
from transformers.tokenization_utils_base import AddedToken
|
29 |
+
|
30 |
+
|
31 |
+
if TYPE_CHECKING:
|
32 |
+
from transformers.tokenization_utils_base import TextInput
|
33 |
+
from transformers.utils import logging, requires_backends
|
34 |
+
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
39 |
+
|
40 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
41 |
+
"vocab_file": {
|
42 |
+
"google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/spiece.model",
|
43 |
+
}
|
44 |
+
}
|
45 |
+
|
46 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
47 |
+
"google/siglip-base-patch16-224": 256,
|
48 |
+
}
|
49 |
+
|
50 |
+
SPIECE_UNDERLINE = "▁"
|
51 |
+
|
52 |
+
|
53 |
+
class SiglipTokenizer(PreTrainedTokenizer):
|
54 |
+
"""
|
55 |
+
Construct a Siglip tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
56 |
+
|
57 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
58 |
+
this superclass for more information regarding those methods.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
vocab_file (`str`):
|
62 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
63 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
64 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
65 |
+
The end of sequence token.
|
66 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
67 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
68 |
+
token instead.
|
69 |
+
pad_token (`str`, *optional*, defaults to `"</s>"`):
|
70 |
+
The token used for padding, for example when batching sequences of different lengths.
|
71 |
+
additional_special_tokens (`List[str]`, *optional*):
|
72 |
+
Additional special tokens used by the tokenizer.
|
73 |
+
sp_model_kwargs (`dict`, *optional*):
|
74 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
75 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
76 |
+
to set:
|
77 |
+
|
78 |
+
- `enable_sampling`: Enable subword regularization.
|
79 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
80 |
+
|
81 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
82 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
83 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
84 |
+
using forward-filtering-and-backward-sampling algorithm.
|
85 |
+
|
86 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
87 |
+
BPE-dropout.
|
88 |
+
model_max_length (`int`, *optional*, defaults to 64):
|
89 |
+
The maximum length (in number of tokens) for model inputs.
|
90 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
91 |
+
Whether or not to lowercase the input when tokenizing.
|
92 |
+
"""
|
93 |
+
|
94 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
95 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
96 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
97 |
+
model_input_names = ["input_ids", "attention_mask"]
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
vocab_file,
|
102 |
+
eos_token="</s>",
|
103 |
+
unk_token="<unk>",
|
104 |
+
pad_token="</s>",
|
105 |
+
additional_special_tokens=None,
|
106 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
107 |
+
model_max_length=64,
|
108 |
+
do_lower_case=True,
|
109 |
+
**kwargs,
|
110 |
+
) -> None:
|
111 |
+
requires_backends(self, "protobuf")
|
112 |
+
|
113 |
+
pad_token = (
|
114 |
+
AddedToken(pad_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
115 |
+
if isinstance(pad_token, str)
|
116 |
+
else pad_token
|
117 |
+
)
|
118 |
+
unk_token = (
|
119 |
+
AddedToken(unk_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
120 |
+
if isinstance(unk_token, str)
|
121 |
+
else unk_token
|
122 |
+
)
|
123 |
+
eos_token = (
|
124 |
+
AddedToken(eos_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
125 |
+
if isinstance(eos_token, str)
|
126 |
+
else eos_token
|
127 |
+
)
|
128 |
+
|
129 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
130 |
+
|
131 |
+
self.do_lower_case = do_lower_case
|
132 |
+
self.vocab_file = vocab_file
|
133 |
+
|
134 |
+
self.sp_model = self.get_spm_processor()
|
135 |
+
self.vocab_file = vocab_file
|
136 |
+
|
137 |
+
super().__init__(
|
138 |
+
eos_token=eos_token,
|
139 |
+
unk_token=unk_token,
|
140 |
+
pad_token=pad_token,
|
141 |
+
additional_special_tokens=additional_special_tokens,
|
142 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
143 |
+
model_max_length=model_max_length,
|
144 |
+
do_lower_case=do_lower_case,
|
145 |
+
**kwargs,
|
146 |
+
)
|
147 |
+
|
148 |
+
def get_spm_processor(self):
|
149 |
+
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
150 |
+
with open(self.vocab_file, "rb") as f:
|
151 |
+
sp_model = f.read()
|
152 |
+
model_pb2 = import_protobuf()
|
153 |
+
model = model_pb2.ModelProto.FromString(sp_model)
|
154 |
+
normalizer_spec = model_pb2.NormalizerSpec()
|
155 |
+
normalizer_spec.add_dummy_prefix = False
|
156 |
+
model.normalizer_spec.MergeFrom(normalizer_spec)
|
157 |
+
sp_model = model.SerializeToString()
|
158 |
+
tokenizer.LoadFromSerializedProto(sp_model)
|
159 |
+
return tokenizer
|
160 |
+
|
161 |
+
@property
|
162 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.vocab_size
|
163 |
+
def vocab_size(self):
|
164 |
+
return self.sp_model.get_piece_size()
|
165 |
+
|
166 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_vocab
|
167 |
+
def get_vocab(self):
|
168 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
169 |
+
vocab.update(self.added_tokens_encoder)
|
170 |
+
return vocab
|
171 |
+
|
172 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_special_tokens_mask
|
173 |
+
def get_special_tokens_mask(
|
174 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
175 |
+
) -> List[int]:
|
176 |
+
"""
|
177 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
178 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
token_ids_0 (`List[int]`):
|
182 |
+
List of IDs.
|
183 |
+
token_ids_1 (`List[int]`, *optional*):
|
184 |
+
Optional second list of IDs for sequence pairs.
|
185 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
186 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
190 |
+
"""
|
191 |
+
if already_has_special_tokens:
|
192 |
+
return super().get_special_tokens_mask(
|
193 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
194 |
+
)
|
195 |
+
|
196 |
+
# normal case: some special tokens
|
197 |
+
if token_ids_1 is None:
|
198 |
+
return ([0] * len(token_ids_0)) + [1]
|
199 |
+
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
200 |
+
|
201 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._add_eos_if_not_present
|
202 |
+
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
|
203 |
+
"""Do not add eos again if user already added it."""
|
204 |
+
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
|
205 |
+
warnings.warn(
|
206 |
+
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
|
207 |
+
" eos tokens being added."
|
208 |
+
)
|
209 |
+
return token_ids
|
210 |
+
else:
|
211 |
+
return token_ids + [self.eos_token_id]
|
212 |
+
|
213 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.create_token_type_ids_from_sequences
|
214 |
+
def create_token_type_ids_from_sequences(
|
215 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
216 |
+
) -> List[int]:
|
217 |
+
"""
|
218 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
219 |
+
use of token type ids, therefore a list of zeros is returned.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
token_ids_0 (`List[int]`):
|
223 |
+
List of IDs.
|
224 |
+
token_ids_1 (`List[int]`, *optional*):
|
225 |
+
Optional second list of IDs for sequence pairs.
|
226 |
+
|
227 |
+
Returns:
|
228 |
+
`List[int]`: List of zeros.
|
229 |
+
"""
|
230 |
+
eos = [self.eos_token_id]
|
231 |
+
|
232 |
+
if token_ids_1 is None:
|
233 |
+
return len(token_ids_0 + eos) * [0]
|
234 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
235 |
+
|
236 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.build_inputs_with_special_tokens
|
237 |
+
def build_inputs_with_special_tokens(
|
238 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
239 |
+
) -> List[int]:
|
240 |
+
"""
|
241 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
242 |
+
adding special tokens. A sequence has the following format:
|
243 |
+
|
244 |
+
- single sequence: `X </s>`
|
245 |
+
- pair of sequences: `A </s> B </s>`
|
246 |
+
|
247 |
+
Args:
|
248 |
+
token_ids_0 (`List[int]`):
|
249 |
+
List of IDs to which the special tokens will be added.
|
250 |
+
token_ids_1 (`List[int]`, *optional*):
|
251 |
+
Optional second list of IDs for sequence pairs.
|
252 |
+
|
253 |
+
Returns:
|
254 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
255 |
+
"""
|
256 |
+
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
|
257 |
+
if token_ids_1 is None:
|
258 |
+
return token_ids_0
|
259 |
+
else:
|
260 |
+
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
|
261 |
+
return token_ids_0 + token_ids_1
|
262 |
+
|
263 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__getstate__
|
264 |
+
def __getstate__(self):
|
265 |
+
state = self.__dict__.copy()
|
266 |
+
state["sp_model"] = None
|
267 |
+
return state
|
268 |
+
|
269 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__setstate__
|
270 |
+
def __setstate__(self, d):
|
271 |
+
self.__dict__ = d
|
272 |
+
|
273 |
+
# for backward compatibility
|
274 |
+
if not hasattr(self, "sp_model_kwargs"):
|
275 |
+
self.sp_model_kwargs = {}
|
276 |
+
|
277 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
278 |
+
self.sp_model.Load(self.vocab_file)
|
279 |
+
|
280 |
+
def remove_punctuation(self, text: str) -> str:
|
281 |
+
return text.translate(str.maketrans("", "", string.punctuation))
|
282 |
+
|
283 |
+
# source: https://github.com/google-research/big_vision/blob/3b8e5ab6ad4f96e32b32826f9e1b8fd277914f9c/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
|
284 |
+
def canonicalize_text(self, text, *, keep_punctuation_exact_string=None):
|
285 |
+
"""Returns canonicalized `text` (puncuation removed).
|
286 |
+
|
287 |
+
Args:
|
288 |
+
text (`str`):
|
289 |
+
String to be canonicalized.
|
290 |
+
keep_punctuation_exact_string (`str`, *optional*):
|
291 |
+
If provided, then this exact string is kept. For example providing '{}' will keep any occurrences of '{}'
|
292 |
+
(but will still remove '{' and '}' that appear separately).
|
293 |
+
"""
|
294 |
+
if keep_punctuation_exact_string:
|
295 |
+
text = keep_punctuation_exact_string.join(
|
296 |
+
self.remove_punctuation(part) for part in text.split(keep_punctuation_exact_string)
|
297 |
+
)
|
298 |
+
else:
|
299 |
+
text = self.remove_punctuation(text)
|
300 |
+
text = re.sub(r"\s+", " ", text)
|
301 |
+
text = text.strip()
|
302 |
+
|
303 |
+
return text
|
304 |
+
|
305 |
+
def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]:
|
306 |
+
"""
|
307 |
+
Converts a string to a list of tokens.
|
308 |
+
"""
|
309 |
+
tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs)
|
310 |
+
|
311 |
+
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
|
312 |
+
tokens = tokens[1:]
|
313 |
+
return tokens
|
314 |
+
|
315 |
+
@property
|
316 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.unk_token_length
|
317 |
+
def unk_token_length(self):
|
318 |
+
return len(self.sp_model.encode(str(self.unk_token)))
|
319 |
+
|
320 |
+
def _tokenize(self, text, **kwargs):
|
321 |
+
"""
|
322 |
+
Returns a tokenized string.
|
323 |
+
|
324 |
+
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
|
325 |
+
SPIECE_UNDERLINE.
|
326 |
+
|
327 |
+
For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`.
|
328 |
+
|
329 |
+
Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
|
330 |
+
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
|
331 |
+
"""
|
332 |
+
text = self.canonicalize_text(text, keep_punctuation_exact_string=None)
|
333 |
+
tokens = self.sp_model.encode(text, out_type=str)
|
334 |
+
|
335 |
+
# 1. Encode string + prefix ex: "<unk> Hey"
|
336 |
+
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
|
337 |
+
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
|
338 |
+
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
|
339 |
+
|
340 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_token_to_id
|
341 |
+
def _convert_token_to_id(self, token):
|
342 |
+
"""Converts a token (str) in an id using the vocab."""
|
343 |
+
return self.sp_model.piece_to_id(token)
|
344 |
+
|
345 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_id_to_token
|
346 |
+
def _convert_id_to_token(self, index):
|
347 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
348 |
+
token = self.sp_model.IdToPiece(index)
|
349 |
+
return token
|
350 |
+
|
351 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.convert_tokens_to_string
|
352 |
+
def convert_tokens_to_string(self, tokens):
|
353 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
354 |
+
current_sub_tokens = []
|
355 |
+
# since we manually add the prefix space, we have to remove it
|
356 |
+
tokens[0] = tokens[0].lstrip(SPIECE_UNDERLINE)
|
357 |
+
out_string = ""
|
358 |
+
prev_is_special = False
|
359 |
+
for token in tokens:
|
360 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
361 |
+
if token in self.all_special_tokens:
|
362 |
+
if not prev_is_special:
|
363 |
+
out_string += " "
|
364 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
365 |
+
prev_is_special = True
|
366 |
+
current_sub_tokens = []
|
367 |
+
else:
|
368 |
+
current_sub_tokens.append(token)
|
369 |
+
prev_is_special = False
|
370 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
371 |
+
return out_string.strip()
|
372 |
+
|
373 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.save_vocabulary
|
374 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
375 |
+
if not os.path.isdir(save_directory):
|
376 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
377 |
+
return
|
378 |
+
out_vocab_file = os.path.join(
|
379 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
380 |
+
)
|
381 |
+
|
382 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
383 |
+
copyfile(self.vocab_file, out_vocab_file)
|
384 |
+
elif not os.path.isfile(self.vocab_file):
|
385 |
+
with open(out_vocab_file, "wb") as fi:
|
386 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
387 |
+
fi.write(content_spiece_model)
|
388 |
+
|
389 |
+
return (out_vocab_file,)
|