---
license: llama3
tags:
- axolotl
- dpo
- trl
base_model: meta-llama/Meta-Llama-3-8B-Instruct
datasets:
- HumanLLMs/Human-Like-DPO-Dataset
model-index:
- name: Humanish-LLama3.1-8B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 64.98
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 28.01
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 8.46
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 0.78
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 30.02
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
name: Open LLM Leaderboard
pipeline_tag: text-generation
library_name: transformers
---
Enhancing Human-Like Responses in Large Language Models
   | 🤗 Models   |
   📊 Dataset   |
   📄Paper   |
# 🚀 Human-Like-Llama3-8B-Instruct
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), specifically optimized to generate more human-like and conversational responses.
The fine-tuning process employed both [Low-Rank Adaptation (LoRA)](https://arxiv.org/abs/2106.09685) and [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290) to enhance natural language understanding, conversational coherence, and emotional intelligence in interactions.
The proccess of creating this models is detailed in the research paper [“Enhancing Human-Like Responses in Large Language Models”](https://arxiv.org/abs/2501.05032).
# 🛠️ Training Configuration
- **Base Model:** Llama3-8B-Instruct
- **Framework:** Axolotl v0.4.1
- **Hardware:** 2x NVIDIA A100 (80 GB) GPUs
- **Training Time:** ~2 hours 20 minutes
- **Dataset:** Synthetic dataset with ≈11,000 samples across 256 diverse topics
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
chat_template: llama3
rl: dpo
datasets:
- path: HumanLLMs/humanish-dpo-project
type: llama3.prompt_pairs
chat_template: llama3
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./humanish-llama3-8b-instruct
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 8
lora_alpha: 4
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: Humanish-DPO
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: HumanLLMs/Humanish-LLama3.1-8B-Instruct
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
save_safetensors: true
```
# 💬 Prompt Template
You can use Llama3 prompt template while using the model:
### Llama3
```
<|start_header_id|>system<|end_header_id|>
{system}<|eot_id|>
<|start_header_id|>user<|end_header_id|>
{user}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
{assistant}<|eot_id|>
```
This prompt template is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
`tokenizer.apply_chat_template()` method:
```python
messages = [
{"role": "system", "content": "You are helpful AI asistant."},
{"role": "user", "content": "Hello!"}
]
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
model.generate(**gen_input)
```
# 🤖 Models
| Model | Download |
|:---------------------:|:-----------------------------------------------------------------------:|
| Human-Like-Llama-3-8B-Instruct | 🤗 [HuggingFace](https://huggingface.co/HumanLLMs/Human-Like-LLama3-8B-Instruct) |
| Human-Like-Qwen-2.5-7B-Instruct | 🤗 [HuggingFace](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) |
| Human-Like-Mistral-Nemo-Instruct | 🤗 [HuggingFace](https://huggingface.co/HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407) |
# 🎯 Benchmark Results
| **Group** | **Model** | **Average** | **IFEval** | **BBH** | **MATH Lvl 5** | **GPQA** | **MuSR** | **MMLU-PRO** |
|--------------------------------|--------------------------------|-------------|------------|---------|----------------|----------|----------|--------------|
| **Llama Models** | Human-Like-Llama-3-8B-Instruct | 22.37 | **64.97** | 28.01 | 8.45 | 0.78 | **2.00** | 30.01 |
| | Llama-3-8B-Instruct | 23.57 | 74.08 | 28.24 | 8.68 | 1.23 | 1.60 | 29.60 |
| | *Difference (Human-Like)* | -1.20 | **-9.11** | -0.23 | -0.23 | -0.45 | +0.40 | +0.41 |
| **Qwen Models** | Human-Like-Qwen-2.5-7B-Instruct | 26.66 | 72.84 | 34.48 | 0.00 | 6.49 | 8.42 | 37.76 |
| | Qwen-2.5-7B-Instruct | 26.86 | 75.85 | 34.89 | 0.00 | 5.48 | 8.45 | 36.52 |
| | *Difference (Human-Like)* | -0.20 | -3.01 | -0.41 | 0.00 | **+1.01**| -0.03 | **+1.24** |
| **Mistral Models** | Human-Like-Mistral-Nemo-Instruct | 22.88 | **54.51** | 32.70 | 7.62 | 5.03 | 9.39 | 28.00 |
| | Mistral-Nemo-Instruct | 23.53 | 63.80 | 29.68 | 5.89 | 5.37 | 8.48 | 27.97 |
| | *Difference (Human-Like)* | -0.65 | **-9.29** | **+3.02**| **+1.73** | -0.34 | +0.91 | +0.03 |
# 📊 Dataset
The dataset used for fine-tuning was generated using LLaMA 3 models. The dataset includes 10,884 samples across 256 distinct topics such as technology, daily life, science, history, and arts. Each sample consists of:
- **Human-like responses:** Natural, conversational answers mimicking human dialogue.
- **Formal responses:** Structured and precise answers with a more formal tone.
The dataset has been open-sourced and is available at:
- 👉 [Human-Like-DPO-Dataset](https://huggingface.co/datasets/HumanLLMs/Human-Like-DPO-Dataset)
More details on the dataset creation process can be found in the accompanying research paper.
# 📝 Citation
```
@misc{çalık2025enhancinghumanlikeresponseslarge,
title={Enhancing Human-Like Responses in Large Language Models},
author={Ethem Yağız Çalık and Talha Rüzgar Akkuş},
year={2025},
eprint={2501.05032},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2501.05032},
}
```