--- library_name: transformers license: mit base_model: akdeniz27/bert-base-turkish-cased-ner tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-turkish-cased-ner-finetuned-ner results: [] --- # bert-base-turkish-cased-ner-finetuned-ner This model is a fine-tuned version of [akdeniz27/bert-base-turkish-cased-ner](https://huggingface.co/akdeniz27/bert-base-turkish-cased-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1768 - Precision: 0.9689 - Recall: 0.9688 - F1: 0.9688 - Accuracy: 0.9711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1616 | 1.0 | 3334 | 0.1414 | 0.9622 | 0.9624 | 0.9623 | 0.9651 | | 0.1143 | 2.0 | 6668 | 0.1483 | 0.9667 | 0.9672 | 0.9670 | 0.9694 | | 0.0957 | 3.0 | 10002 | 0.1531 | 0.9680 | 0.9682 | 0.9681 | 0.9705 | | 0.0488 | 4.0 | 13336 | 0.1720 | 0.9690 | 0.9688 | 0.9689 | 0.9713 | | 0.03 | 5.0 | 16670 | 0.1768 | 0.9689 | 0.9688 | 0.9688 | 0.9711 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1