--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-finetuned-ner results: [] --- # bert-base-uncased-finetuned-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2128 - Precision: 0.9438 - Recall: 0.9453 - F1: 0.9446 - Accuracy: 0.9412 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5739 | 1.0 | 625 | 0.2622 | 0.9206 | 0.9248 | 0.9227 | 0.9207 | | 0.2568 | 2.0 | 1250 | 0.2129 | 0.9382 | 0.9452 | 0.9417 | 0.9385 | | 0.1837 | 3.0 | 1875 | 0.2128 | 0.9438 | 0.9453 | 0.9446 | 0.9412 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1