Hwilner commited on
Commit
d621e12
·
1 Parent(s): 6f70e90

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.25 +/- 0.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8cd3b214a3a670bab80aa9739259c9a767e697a3a5404e8a00f4c259b434fba
3
+ size 106577
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78b083aca7a0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x78b083acd8c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1696337858532138037,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxBhxPtHnIrzgudg+n+F0Pvrz0j6WQui9HCiDPmKT2L7a/DQ/xBhxPtHnIrzgudg+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuv8BPjxIDz8VwL0/+X7sPnogmj+3/pS/Kz4NP3Vyjb9wUl0/cBGevjZEyz/Et8S/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADEGHE+0ecivOC52D6ixfY+9bkRuwajwT6f4XQ++vPSPpZC6L1tQXG+u7rZP98Cs78cKIM+YpPYvtr8ND/ssEY/J5rWv/U7oz/EGHE+0ecivOC52D6ixfY+9bkRuwajwT6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.23544604 -0.00994296 0.4232931 ]\n [ 0.23914193 0.41201764 -0.11340825]\n [ 0.2561654 -0.42299944 0.7069832 ]\n [ 0.23544604 -0.00994296 0.4232931 ]]",
34
+ "desired_goal": "[[ 0.12695208 0.55969596 1.4824244 ]\n [ 0.46190622 1.2041161 -1.1640233 ]\n [ 0.55172986 -1.1050555 0.86453915]\n [-0.3087268 1.5880191 -1.5368581 ]]",
35
+ "observation": "[[ 0.23544604 -0.00994296 0.4232931 0.48197657 -0.00222361 0.3781969 ]\n [ 0.23914193 0.41201764 -0.11340825 -0.23560114 1.7010111 -1.3985251 ]\n [ 0.2561654 -0.42299944 0.7069832 0.7761371 -1.6765794 1.2752672 ]\n [ 0.23544604 -0.00994296 0.4232931 0.48197657 -0.00222361 0.3781969 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApvxavRL/S70beIo7XgWrvSGAtr1fkWA9FxQgvX5ACT4Kef89k+UVvZHAdD2uGeQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.0534636 -0.0498038 0.00422574]\n [-0.08350633 -0.08911157 0.05482614]\n [-0.03908166 0.13403508 0.12474258]\n [-0.03659589 0.05975396 0.11137711]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9IzLwF1SwaMAWyUSwSMAXSUR0Cq2vObI91VdX2UKGgGR7/AwMYuTRplaAdLAmgIR0Cq2ijXFtKqdX2UKGgGR7+1NYbKifxuaAdLAmgIR0Cq2W7/n4fwdX2UKGgGR7/UqO938n/laAdLBWgIR0Cq28+FtbcHdX2UKGgGR7/MK+i8FpwkaAdLA2gIR0Cq2jxzJZGKdX2UKGgGR7/VhbW3BpHqaAdLBGgIR0Cq2w0DuBtldX2UKGgGR7/ImUnogV45aAdLA2gIR0Cq29/k3juKdX2UKGgGR7+lPpIMBp6AaAdLAWgIR0Cq2xKjafz0dX2UKGgGR7+4Ao5PuXu3aAdLAmgIR0Cq2kfdyksSdX2UKGgGR7/byKvV3EAHaAdLBGgIR0Cq2YjiXIEKdX2UKGgGR790KiO/+Kj0aAdLAWgIR0Cq2Y5J04ipdX2UKGgGR7+1prULDye7aAdLAmgIR0Cq2lX6hxo7dX2UKGgGR7/QzsQd0aIfaAdLA2gIR0Cq2/QKBun/dX2UKGgGR7/MQr+YMOPOaAdLA2gIR0Cq2ybS7Xg+dX2UKGgGR7+jUoa1kUblaAdLAWgIR0Cq2/mgi/widX2UKGgGR7+ple4TbnHOaAdLAWgIR0Cq2yxigCfZdX2UKGgGR7/SZr56+nIiaAdLA2gIR0Cq2aJF1B+ndX2UKGgGR7+8Svkiliz+aAdLAmgIR0Cq3ATg2qDLdX2UKGgGR7/TfJV81Gb1aAdLBGgIR0Cq2myZa3ZxdX2UKGgGR7+/naFmFrVOaAdLAmgIR0Cq2a12q1gIdX2UKGgGR7/H7VrhzeXSaAdLA2gIR0Cq20AKfFrEdX2UKGgGR7+qXIEKVpsXaAdLAmgIR0Cq2bp9qk/KdX2UKGgGR7/VoZAIIF/yaAdLA2gIR0Cq3Be7cwg1dX2UKGgGR7/WNeMQ2/BWaAdLA2gIR0Cq20+EqUeNdX2UKGgGR7/WbhWHUMG5aAdLBGgIR0Cq2oTF+/g0dX2UKGgGR7+ncYZVGTcJaAdLAWgIR0Cq21VR+BpYdX2UKGgGR7/FWsijcmBwaAdLA2gIR0Cq2cuKXOW0dX2UKGgGR7/LbpNbkfcOaAdLA2gIR0Cq3CuUD+zddX2UKGgGR7/JFCLMs6JZaAdLA2gIR0Cq2piTdLxqdX2UKGgGR7+2M4tHxz7uaAdLAmgIR0Cq3DaGQCCBdX2UKGgGR7/Ur9VFQVKxaAdLA2gIR0Cq22lJQLuydX2UKGgGR7+kDZDiOvMbaAdLAWgIR0Cq3DwWnCO4dX2UKGgGR7+pWilBQemvaAdLAWgIR0Cq227BwdbQdX2UKGgGR7+3A/LTx5LRaAdLAmgIR0Cq2qQ5WBBidX2UKGgGR7/Ya5wwTM7maAdLBGgIR0Cq2eUcfeUIdX2UKGgGR7+ku14Pf8/EaAdLAWgIR0Cq23TXrdFfdX2UKGgGR7/B48lolD4QaAdLAmgIR0Cq2rFwkxATdX2UKGgGR7/Olme18b71aAdLA2gIR0Cq3E85bQkYdX2UKGgGR7/VQaaTfR/maAdLA2gIR0Cq2fesPrfMdX2UKGgGR7/YUC7sfJV9aAdLBGgIR0Cq243EIgNgdX2UKGgGR7/X6jnFHaviaAdLBGgIR0Cq2sh2GIsRdX2UKGgGR7/cIvalDWsjaAdLBGgIR0Cq3GmahHskdX2UKGgGR7/EFB6a9bosaAdLAmgIR0Cq25zFuNxVdX2UKGgGR7/aZHNHH3lCaAdLBGgIR0Cq2hLNOdoWdX2UKGgGR7+zfXPJJXhgaAdLAmgIR0Cq2tgHNX5ndX2UKGgGR7+1czImw7koaAdLAmgIR0Cq26hy8zyjdX2UKGgGR7+d1ZDArQPaaAdLAWgIR0Cq2t2dupCKdX2UKGgGR7+0p7TlT3qSaAdLAmgIR0Cq2h6e5Fw2dX2UKGgGR7/QsMRYigTRaAdLA2gIR0Cq3HwE6kqMdX2UKGgGR7/EOiFj/dZaaAdLAmgIR0Cq2uhz3h4udX2UKGgGR7/NR4QjD8+BaAdLA2gIR0Cq274fOlfrdX2UKGgGR7/OoR7JGOMmaAdLA2gIR0Cq3JESuhbodX2UKGgGR7+/sfJV81GcaAdLAmgIR0Cq2vj5bhWHdX2UKGgGR7/QLJCBwuM/aAdLBGgIR0Cq2jnmRvFWdX2UKGgGR7/NtGd7OVxCaAdLA2gIR0Cq28++ueSTdX2UKGgGR7+7mRvFWGRFaAdLAmgIR0Cq2kX/HYHxdX2UKGgGR7/NzMA3kxREaAdLA2gIR0Cq2wrr5ZbIdX2UKGgGR7/cGs3hn8KpaAdLBGgIR0Cq3KufmLccdX2UKGgGR7+l/MGHHmzTaAdLAWgIR0Cq2xOO0b97dX2UKGgGR7/WskY4yXUpaAdLA2gIR0Cq2lpsO5J9dX2UKGgGR7/T9hJAdGRWaAdLA2gIR0Cq2yS+xnnMdX2UKGgGR7/BzzVc2R7raAdLAmgIR0Cq2mWa2F37dX2UKGgGR7/Xih37k4m1aAdLBmgIR0Cq2/We6I3zdX2UKGgGR7+jEDQqqfe2aAdLAWgIR0Cq2/2hZha1dX2UKGgGR7/RriVB2OhkaAdLA2gIR0Cq2niGN70GdX2UKGgGR7/CxY7q6e5GaAdLAmgIR0Cq3Ahr30wrdX2UKGgGR7/Ycv/R3NcGaAdLBGgIR0Cq2z2p6yB1dX2UKGgGR7/Ghs67ulXSaAdLA2gIR0Cq2oiwjdHldX2UKGgGR7+kv24/eLvUaAdLAWgIR0Cq2pClJpWWdX2UKGgGR7/Xu9eyAxzraAdLBGgIR0Cq3CEGzKLbdX2UKGgGR7/WoFFDv3JxaAdLBGgIR0Cq21aNdZ7pdX2UKGgGR7+12ll9Sde6aAdLAmgIR0Cq3CzUy57PdX2UKGgGR7/QHUtqYZ2qaAdLA2gIR0Cq2qKaoddWdX2UKGgGR7/J/z8P4EfUaAdLA2gIR0Cq22ddVvMsdX2UKGgGR7/BhmXgLqlhaAdLAmgIR0Cq3DskIHC5dX2UKGgGR7/U5jH4oJAuaAdLBGgIR0Cq2r0HyEtedX2UKGgGR7/PkZJkGzKLaAdLA2gIR0Cq3E0Gu9vkdX2UKGgGR7/Y4XGff4yoaAdLBGgIR0Cq24I9s7+2dX2UKGgGR7/6MQiA2AG0aAdLFGgIR0Cq3SjA8B+4dX2UKGgGR7+zy8SPEKmbaAdLAmgIR0Cq3FuWKMvRdX2UKGgGR7/JgG8mKIi1aAdLA2gIR0Cq2tFkpZwGdX2UKGgGR7/LPcBU70WeaAdLA2gIR0Cq25doN/e+dX2UKGgGR7/U4iHIp6QeaAdLBGgIR0Cq3UVk1/DtdX2UKGgGR7/Xo6S1Vo6CaAdLBGgIR0Cq3Hgksz2wdX2UKGgGR7/cCaJAMUh3aAdLBGgIR0Cq2u31J17qdX2UKGgGR7/Y/GEPDpC8aAdLBGgIR0Cq27URFqi5dX2UKGgGR7+PWlMyrPt2aAdLAWgIR0Cq2vXv6TGHdX2UKGgGR7/OciGFi8WcaAdLA2gIR0Cq3VfQBxPwdX2UKGgGR7/QffGdZq20aAdLA2gIR0Cq3IqBVdX1dX2UKGgGR7+8Cr92ovSMaAdLAmgIR0Cq27+0G/vfdX2UKGgGR7+7pC8e0XxfaAdLAmgIR0Cq2wB5HEuQdX2UKGgGR7+25SWJJoTPaAdLAmgIR0Cq2wsfA9FGdX2UKGgGR7/I2MKkVN5/aAdLA2gIR0Cq3WyHmA9WdX2UKGgGR7/FdD6WPcSHaAdLA2gIR0Cq3KBAfMfSdX2UKGgGR7/S20iQkonbaAdLA2gIR0Cq29YyXUpedX2UKGgGR7+5FXq7iADraAdLAmgIR0Cq2x5Fw1iwdX2UKGgGR7/LC53C9AX3aAdLA2gIR0Cq3LLr5ZbIdX2UKGgGR7/MO4oZydWiaAdLA2gIR0Cq2+geJYT1dX2UKGgGR7/VulXRw6yTaAdLBGgIR0Cq3YYNy5qedX2UKGgGR7/RMTewcHW0aAdLA2gIR0Cq2y4p2ECedWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:253885364ae9d9505f3767d86166acd68a21ba3c55b6b5053f35ad46dc9078a5
3
+ size 44606
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f08c1ac0a7ab2577aee09d1421e890e5fb060aa1c8b1d495d444414bfb70fc9
3
+ size 45886
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78b083aca7a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78b083acd8c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696337858532138037, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxBhxPtHnIrzgudg+n+F0Pvrz0j6WQui9HCiDPmKT2L7a/DQ/xBhxPtHnIrzgudg+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuv8BPjxIDz8VwL0/+X7sPnogmj+3/pS/Kz4NP3Vyjb9wUl0/cBGevjZEyz/Et8S/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADEGHE+0ecivOC52D6ixfY+9bkRuwajwT6f4XQ++vPSPpZC6L1tQXG+u7rZP98Cs78cKIM+YpPYvtr8ND/ssEY/J5rWv/U7oz/EGHE+0ecivOC52D6ixfY+9bkRuwajwT6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.23544604 -0.00994296 0.4232931 ]\n [ 0.23914193 0.41201764 -0.11340825]\n [ 0.2561654 -0.42299944 0.7069832 ]\n [ 0.23544604 -0.00994296 0.4232931 ]]", "desired_goal": "[[ 0.12695208 0.55969596 1.4824244 ]\n [ 0.46190622 1.2041161 -1.1640233 ]\n [ 0.55172986 -1.1050555 0.86453915]\n [-0.3087268 1.5880191 -1.5368581 ]]", "observation": "[[ 0.23544604 -0.00994296 0.4232931 0.48197657 -0.00222361 0.3781969 ]\n [ 0.23914193 0.41201764 -0.11340825 -0.23560114 1.7010111 -1.3985251 ]\n [ 0.2561654 -0.42299944 0.7069832 0.7761371 -1.6765794 1.2752672 ]\n [ 0.23544604 -0.00994296 0.4232931 0.48197657 -0.00222361 0.3781969 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApvxavRL/S70beIo7XgWrvSGAtr1fkWA9FxQgvX5ACT4Kef89k+UVvZHAdD2uGeQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0534636 -0.0498038 0.00422574]\n [-0.08350633 -0.08911157 0.05482614]\n [-0.03908166 0.13403508 0.12474258]\n [-0.03659589 0.05975396 0.11137711]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9IzLwF1SwaMAWyUSwSMAXSUR0Cq2vObI91VdX2UKGgGR7/AwMYuTRplaAdLAmgIR0Cq2ijXFtKqdX2UKGgGR7+1NYbKifxuaAdLAmgIR0Cq2W7/n4fwdX2UKGgGR7/UqO938n/laAdLBWgIR0Cq28+FtbcHdX2UKGgGR7/MK+i8FpwkaAdLA2gIR0Cq2jxzJZGKdX2UKGgGR7/VhbW3BpHqaAdLBGgIR0Cq2w0DuBtldX2UKGgGR7/ImUnogV45aAdLA2gIR0Cq29/k3juKdX2UKGgGR7+lPpIMBp6AaAdLAWgIR0Cq2xKjafz0dX2UKGgGR7+4Ao5PuXu3aAdLAmgIR0Cq2kfdyksSdX2UKGgGR7/byKvV3EAHaAdLBGgIR0Cq2YjiXIEKdX2UKGgGR790KiO/+Kj0aAdLAWgIR0Cq2Y5J04ipdX2UKGgGR7+1prULDye7aAdLAmgIR0Cq2lX6hxo7dX2UKGgGR7/QzsQd0aIfaAdLA2gIR0Cq2/QKBun/dX2UKGgGR7/MQr+YMOPOaAdLA2gIR0Cq2ybS7Xg+dX2UKGgGR7+jUoa1kUblaAdLAWgIR0Cq2/mgi/widX2UKGgGR7+ple4TbnHOaAdLAWgIR0Cq2yxigCfZdX2UKGgGR7/SZr56+nIiaAdLA2gIR0Cq2aJF1B+ndX2UKGgGR7+8Svkiliz+aAdLAmgIR0Cq3ATg2qDLdX2UKGgGR7/TfJV81Gb1aAdLBGgIR0Cq2myZa3ZxdX2UKGgGR7+/naFmFrVOaAdLAmgIR0Cq2a12q1gIdX2UKGgGR7/H7VrhzeXSaAdLA2gIR0Cq20AKfFrEdX2UKGgGR7+qXIEKVpsXaAdLAmgIR0Cq2bp9qk/KdX2UKGgGR7/VoZAIIF/yaAdLA2gIR0Cq3Be7cwg1dX2UKGgGR7/WNeMQ2/BWaAdLA2gIR0Cq20+EqUeNdX2UKGgGR7/WbhWHUMG5aAdLBGgIR0Cq2oTF+/g0dX2UKGgGR7+ncYZVGTcJaAdLAWgIR0Cq21VR+BpYdX2UKGgGR7/FWsijcmBwaAdLA2gIR0Cq2cuKXOW0dX2UKGgGR7/LbpNbkfcOaAdLA2gIR0Cq3CuUD+zddX2UKGgGR7/JFCLMs6JZaAdLA2gIR0Cq2piTdLxqdX2UKGgGR7+2M4tHxz7uaAdLAmgIR0Cq3DaGQCCBdX2UKGgGR7/Ur9VFQVKxaAdLA2gIR0Cq22lJQLuydX2UKGgGR7+kDZDiOvMbaAdLAWgIR0Cq3DwWnCO4dX2UKGgGR7+pWilBQemvaAdLAWgIR0Cq227BwdbQdX2UKGgGR7+3A/LTx5LRaAdLAmgIR0Cq2qQ5WBBidX2UKGgGR7/Ya5wwTM7maAdLBGgIR0Cq2eUcfeUIdX2UKGgGR7+ku14Pf8/EaAdLAWgIR0Cq23TXrdFfdX2UKGgGR7/B48lolD4QaAdLAmgIR0Cq2rFwkxATdX2UKGgGR7/Olme18b71aAdLA2gIR0Cq3E85bQkYdX2UKGgGR7/VQaaTfR/maAdLA2gIR0Cq2fesPrfMdX2UKGgGR7/YUC7sfJV9aAdLBGgIR0Cq243EIgNgdX2UKGgGR7/X6jnFHaviaAdLBGgIR0Cq2sh2GIsRdX2UKGgGR7/cIvalDWsjaAdLBGgIR0Cq3GmahHskdX2UKGgGR7/EFB6a9bosaAdLAmgIR0Cq25zFuNxVdX2UKGgGR7/aZHNHH3lCaAdLBGgIR0Cq2hLNOdoWdX2UKGgGR7+zfXPJJXhgaAdLAmgIR0Cq2tgHNX5ndX2UKGgGR7+1czImw7koaAdLAmgIR0Cq26hy8zyjdX2UKGgGR7+d1ZDArQPaaAdLAWgIR0Cq2t2dupCKdX2UKGgGR7+0p7TlT3qSaAdLAmgIR0Cq2h6e5Fw2dX2UKGgGR7/QsMRYigTRaAdLA2gIR0Cq3HwE6kqMdX2UKGgGR7/EOiFj/dZaaAdLAmgIR0Cq2uhz3h4udX2UKGgGR7/NR4QjD8+BaAdLA2gIR0Cq274fOlfrdX2UKGgGR7/OoR7JGOMmaAdLA2gIR0Cq3JESuhbodX2UKGgGR7+/sfJV81GcaAdLAmgIR0Cq2vj5bhWHdX2UKGgGR7/QLJCBwuM/aAdLBGgIR0Cq2jnmRvFWdX2UKGgGR7/NtGd7OVxCaAdLA2gIR0Cq28++ueSTdX2UKGgGR7+7mRvFWGRFaAdLAmgIR0Cq2kX/HYHxdX2UKGgGR7/NzMA3kxREaAdLA2gIR0Cq2wrr5ZbIdX2UKGgGR7/cGs3hn8KpaAdLBGgIR0Cq3KufmLccdX2UKGgGR7+l/MGHHmzTaAdLAWgIR0Cq2xOO0b97dX2UKGgGR7/WskY4yXUpaAdLA2gIR0Cq2lpsO5J9dX2UKGgGR7/T9hJAdGRWaAdLA2gIR0Cq2yS+xnnMdX2UKGgGR7/BzzVc2R7raAdLAmgIR0Cq2mWa2F37dX2UKGgGR7/Xih37k4m1aAdLBmgIR0Cq2/We6I3zdX2UKGgGR7+jEDQqqfe2aAdLAWgIR0Cq2/2hZha1dX2UKGgGR7/RriVB2OhkaAdLA2gIR0Cq2niGN70GdX2UKGgGR7/CxY7q6e5GaAdLAmgIR0Cq3Ahr30wrdX2UKGgGR7/Ycv/R3NcGaAdLBGgIR0Cq2z2p6yB1dX2UKGgGR7/Ghs67ulXSaAdLA2gIR0Cq2oiwjdHldX2UKGgGR7+kv24/eLvUaAdLAWgIR0Cq2pClJpWWdX2UKGgGR7/Xu9eyAxzraAdLBGgIR0Cq3CEGzKLbdX2UKGgGR7/WoFFDv3JxaAdLBGgIR0Cq21aNdZ7pdX2UKGgGR7+12ll9Sde6aAdLAmgIR0Cq3CzUy57PdX2UKGgGR7/QHUtqYZ2qaAdLA2gIR0Cq2qKaoddWdX2UKGgGR7/J/z8P4EfUaAdLA2gIR0Cq22ddVvMsdX2UKGgGR7/BhmXgLqlhaAdLAmgIR0Cq3DskIHC5dX2UKGgGR7/U5jH4oJAuaAdLBGgIR0Cq2r0HyEtedX2UKGgGR7/PkZJkGzKLaAdLA2gIR0Cq3E0Gu9vkdX2UKGgGR7/Y4XGff4yoaAdLBGgIR0Cq24I9s7+2dX2UKGgGR7/6MQiA2AG0aAdLFGgIR0Cq3SjA8B+4dX2UKGgGR7+zy8SPEKmbaAdLAmgIR0Cq3FuWKMvRdX2UKGgGR7/JgG8mKIi1aAdLA2gIR0Cq2tFkpZwGdX2UKGgGR7/LPcBU70WeaAdLA2gIR0Cq25doN/e+dX2UKGgGR7/U4iHIp6QeaAdLBGgIR0Cq3UVk1/DtdX2UKGgGR7/Xo6S1Vo6CaAdLBGgIR0Cq3Hgksz2wdX2UKGgGR7/cCaJAMUh3aAdLBGgIR0Cq2u31J17qdX2UKGgGR7/Y/GEPDpC8aAdLBGgIR0Cq27URFqi5dX2UKGgGR7+PWlMyrPt2aAdLAWgIR0Cq2vXv6TGHdX2UKGgGR7/OciGFi8WcaAdLA2gIR0Cq3VfQBxPwdX2UKGgGR7/QffGdZq20aAdLA2gIR0Cq3IqBVdX1dX2UKGgGR7+8Cr92ovSMaAdLAmgIR0Cq27+0G/vfdX2UKGgGR7+7pC8e0XxfaAdLAmgIR0Cq2wB5HEuQdX2UKGgGR7+25SWJJoTPaAdLAmgIR0Cq2wsfA9FGdX2UKGgGR7/I2MKkVN5/aAdLA2gIR0Cq3WyHmA9WdX2UKGgGR7/FdD6WPcSHaAdLA2gIR0Cq3KBAfMfSdX2UKGgGR7/S20iQkonbaAdLA2gIR0Cq29YyXUpedX2UKGgGR7+5FXq7iADraAdLAmgIR0Cq2x5Fw1iwdX2UKGgGR7/LC53C9AX3aAdLA2gIR0Cq3LLr5ZbIdX2UKGgGR7/MO4oZydWiaAdLA2gIR0Cq2+geJYT1dX2UKGgGR7/VulXRw6yTaAdLBGgIR0Cq3YYNy5qedX2UKGgGR7/RMTewcHW0aAdLA2gIR0Cq2y4p2ECedWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (694 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.2507940680719912, "std_reward": 0.1131434271666458, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-03T13:59:38.376501"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a01cb97237d9fe33cd36621038352d5b49025c40789f171e0cc751d647b90f2
3
+ size 2623